Comparison of Surface Passivation Layers on InGaN/GaN MQW LEDs

  • Yang, Hyuck-Soo (Department of Materials Science and Engineering, University of Florida) ;
  • Han, Sang-Youn (Department of Materials Science and Engineering, University of Florida) ;
  • Hlad, M. (Department of Materials Science and Engineering, University of Florida) ;
  • Gila, B.P. (Department of Materials Science and Engineering, University of Florida) ;
  • Baik, K.H. (Department of Materials Science and Engineering, University of Florida) ;
  • Pearton, S.J. (Department of Materials Science and Engineering, University of Florida) ;
  • Jang, Soo-Hwan (Department of Chemical Engineering, University of Florida) ;
  • Kang, B.S. (Department of Chemical Engineering, University of Florida) ;
  • Ren, F. (Department of Chemical Engineering, University of Florida)
  • Published : 2005.06.30

Abstract

The effect of different surface passivation films on blue or green (465-505 nm) InGaN/GaN multi-quantum well light-emitting diodes (LEDs) die were examined. $SiO_2$ or $SiN_x$ deposited by plasma enhanced chemical vapor deposition, or $Sc_2O_3$ or MgO deposited by rf plasma enhanced molecular beam epitaxy all show excellent passivation qualities. The forward current-voltage (I-V) characteristics were all independent of the passivation film used, even though the MBE-deposited films have lower interface state densities ($3-5{\times}10^{12}\;eV^{-1}\;cm^{-2}$) compared to the PECVD films (${\sim}10^{12}\;eV^{-1}\;cm^{-2}$), The reverse I-V characteristics showed more variation, hut there was no systematic difference for any of the passivation films, The results suggest that simple PECVD processes are effective for providing robust surface protection for InGaN/GaN LEDs.

Keywords

References

  1. See, for example, Introduction to Solid-State Lighting, A. Zukauskas, M. S. Shur, and R. Gaska (John Wiley and Sons, NY 2002)
  2. Introduction to Nitride Semiconductor Blue Lasers and Light-Emitting Diodes, ed. S. Nakamura and S. F. Chichibu (Taylor and Francis, London, 2000)
  3. X. A. Cao and S. D. Arthur, Appl. Phys. Lett. 85, 3971 (2004) https://doi.org/10.1063/1.1810631
  4. X. A. Cao, S. F. LeBoeuf, M. P. D Evelyn, S. D. Arthur, J. Kretchmer, C. H. Yan, and Z. H. Yang, Appl. Phys. Lett. 84, 4313 (2004) https://doi.org/10.1063/1.1756683
  5. X. A. Cao, J. M. Teetsov, M. P. D Evelyn, D. W. Merfeld, and C. H. Yan, Appl. Phys. Lett. 85, 7 (2004) https://doi.org/10.1063/1.1767280
  6. N. Grandjean, J. Massies, M. Leroux, and P. Lorenzini, Jpn. J. Appl. Phys. 37, L907 (1998) https://doi.org/10.1143/JJAP.37.L907
  7. T. Takeuchi, G. Hasnain, S. Corzine, M. Hueschen, R. P. Schneider, C. Kocot, M. Blomqvist, Y.-L. Chang, D. Lefforge, M. R. Krames, L. W. Cook, and S. A. Stockman , Jpn. J. Appl. Phys. 40, L861 (2001) https://doi.org/10.1143/JJAP.40.L861
  8. B. Damilano, N. Grandjean, C. Pernot, and J. Massies, Jpn. J. Appl. Phys. 40, L918 (2001) https://doi.org/10.1143/JJAP.40.L918
  9. A. Chitnis, V. Adivarahan, M. Shatalov, J. Zhang, M. Gaevski, W. Shuai, R. Pachipulusu, J. Sun, K. Simin, G. Simin, J. Yang, and M. A. Khan , Jpn. J. Appl. Phys. 41, L320 (2002) https://doi.org/10.1143/JJAP.41.L320
  10. V. Adivarahan, J. Zhang, A. Chitnis, W. Shuai, J. Sun, R. Pachipulusu, M. Shatalov, and M. A. Khan, Jpn. J. Appl. Phys. 41, L435 (2002) https://doi.org/10.1143/JJAP.41.L435
  11. A. Chitnis, J. P. Zhang, V. Adivarahan, W. Shuai, J. Sun, M. Shatalov, J. W. Yang, G. Simin, and M. A. Khan, Jpn. J. Appl. Phys. 41, L450 (2002) https://doi.org/10.1143/JJAP.41.L450
  12. M. Shatalov, A. Chitnis, A. Koudymov, J. Zhang, V. Adivarahan, G. Simin, and M. A. Khan, Jpn. J. Appl. Phys. 41, L1146 (2002) https://doi.org/10.1143/JJAP.41.L1146
  13. D. Morita, M. Sano, M. Yamamoto, T. Murayama, S. Nagahama, and T. Mukai , Jpn. J. Appl. Phys. 41, L1434 (2002) https://doi.org/10.1143/JJAP.41.L1434
  14. S. Wu, V. Adivarahan, M. Shatalov, A. Chitnis, W. H. Sun, and M. A. Khan, Jpn. J. Appl. Phys. 43, L1035 (2004) https://doi.org/10.1143/JJAP.43.L1035
  15. S. -R. Jeon, M. Gherasimova, Z. Ren, J. Su, G. Cui, J. Han, H. Peng, Y.-K. Song, A. V. Nurmikko, L. Zhou, W. Goetz, and M. Krames, Jpn. J. Appl. Phys. 43, L1409 (2004) https://doi.org/10.1143/JJAP.43.L1409
  16. H. Itoh, S. Watanabe, M. Goto, N. Yamada, M. Misra, A. Y. Kim, and S. A. Stockman, Jpn. J. Appl. Phys. 42, L1244 (2003) https://doi.org/10.1143/JJAP.42.L1244
  17. S. A. Nikishin, V. V. Kuryatkov, A. Chandolu, B. A. Borisov, G. D. Kipshidze, I. Ahmad, M. Holtz, and H. Temkin, Jpn. J. Appl. Phys. 42, L1362 (2003) https://doi.org/10.1143/JJAP.42.L1362
  18. B. P. Gila, F. Ren and C. R. Abernathy, Mat. Sci. Eng. R 44,151 (2004) https://doi.org/10.1016/j.mser.2004.06.001