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Enhanced Hole Injections in Organic Light Emitting
Diode using Rhodivm Oxide Coated Anode

Seo Young Kim*, Ho Won Choi, Kwang Young Kim, Yoon-Heung Tak** and Jong-Lam Lee™

Abstract—We compare electrical and optical properties
of organic light emitting diodes (OLEDs) using rhodium-
oxide-coated indium-tin-oxide (O:-RA/ITO) to that using
O:-plasma-treated ITO (/TO) anodes. The turn-en
voltage decreased from 7 V to 5 V and luminance value
increased when the O: plasma treated Rh layer was
deposited on ITO. Synchrotron radiation photoelectron
spectroscopy results showed the dipole energies of both
ITO and O:-Rh/ITO were same with each other, - 0.3 eV,
meaning the formation of same amount of interface
dipole. The secondary electron emission spectra revealed
that the work function of O:-RW/ITO is higher by 0.2 eV
than that of ITO, resulting in the decrease of the turn-on
voltage via reduction of hole injection barrier.

Index Terms—organic light emitting diodes, hole
injection layer, synchrotron radiation photoemission
spectroscopy, interface dipole, O: plasma treatment

I. INTRODUCTION

Ever since the high efficiency organic light emitting
diode (OLED) was reported, numerous efforts have been
made to improve the characteristics of OLEDs. The
performance of an OLED is influenced by the properties of
the injecting electrodes and the electrode-organic
interfaces. At the interface of indium tin oxide (ITO)
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anode with organic materials, enhanced hole injection was
desired to increase internal quantum efficiency. According
to the vacuum level alignment rule, hole injection barrier
is defined by the difference between the ionization energy
of the organic material and metal work function. To reduce
hole injection barrier, many researchers gave an effort to
elevate the work function of ITO anode, such as surface
plasma treatment, insertion of metal oxides with high work
function between ITO and organic material, and the
formation of metal-doped indium tin oxide layer on ITO
surface.[1-3] However, numerous photoelectron studies
and Kelvin probe measurements have demonstrated that
the actual situation is more complex, because an interface
dipole (A) can appear at the metal-organic material
interface and affect the charge injection barrier.[4] In thick
metal-organic material system, a linear dependence of the
A on the metal work function is observed.5 Therefore, A as
well as the work function of anode should be considered to
reduce hole injection barrier.

In this paper, we report the enhancement of electrical
and optical performance of OLEDs using an interfacial
layer of rodium oxide (RhOx) between ITO anodes and the
hole transport layer of 4’-bis[N-(1-naphtyl)-N-phenyl-
amino]biphenyl (0-NPD). The RhOx layer was prepared by
exposing the thin Rh layer to Oz plasma. The change in the
work function with the formation of RhOx was examined
using synchrotron radiation photoelectron spectroscopy .
(SRPES). SRPES was also employed to observe the
change of the energy level with in situ deposition of o-
NPD layer on RhOx coated ITO anode. From this, the
effects of RhO« layers on the enhancement of both
electrical and optical properties of OLEDs were discussed.
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I1. EXPERIMENT

A glass coating with ITO (150 nm thick, ~ 20 Q/[J)
was used as the starting substrate. The ITO surface was
cleaned in sequence with acetone, iso-propyl alcohol and
deionized water, and then dried with a high purity nitrogen
gas. The ITO surface was treated with Oz plasma for 1 min
under 100 mTorr (“/T0”). The plasma power was 150 W.
A thin layer of Rh with a thickness of 2 nm was deposited
on the plasma-treated ITO by e-beam evaporator
(“RH/ITO”). The Rh film was also exposed to the O
plasma for 1 min to produce a RhOx layer (“OxRW/ITO”).
The thickness of the thin layer was deduced from the
period of the oscillations in x-ray reflection, measured at
the 3C2 beam line of the Pohang Acceleration Laboratory
(PAL). These three types of samples were loaded into a
thermal evaporator and a-NPD with a thickness of 70 nm,
tris(8-hydroxyquinoline) aluminum (Algs, 60 nm), and
aluminum (Al, 150 nm) layers were deposited in sequence.
During the deposition, the base pressure of the chamber
was maintained as low as 10 Torr. The active area of the
device was 3 X 3 mm?. The current density-voltage and
luminescence-voltage characteristics of the devices were
measured. The surface treatment conditions for the three
kinds of anodes are summarized in Table 1.

In order to investigate the chemical bonding states of
ITO by inserting the interfacial layer of RhOx, the three

Table. 1. Anode preparation methods for OLEDs

samples were loaded into a vacuum chamber, equipped
with an electron analyzer, at the 4B] beam line in PAL.
An incident photon energy of 650 eV was used to obtain
Rh 3d, In 3d, Sn 3d, O 1s and C 1s core level spectra.
Then, o-NPD was in situ deposited on the samples using
thermal evaporator. The evaporation of o-NPD was
performed in a separately connected preparation chamber
and core level spectra were obtained in a main chamber.
The a-NPD coverage at each step was determined by
comparing the atomic ratio of C 1s over In 3d. At each
step, the sample was characterized by measuring the
valence band spectra, the core level spectra, and the
secondary electron emission spectra. The onset of
photoemission, corresponding to the vacuum level at the
ITO surface was measured with a negative bias (-20 V) on
the sample to avoid the work function of detector. The
incident photon energy was calibrated with the core level
spectrum of Au 4f.

II1. RESULTS AND DISCUSSION

Table 2 shows the current density and luminance value
as a function of applied voltage. The turn-on voltage
decreased from 7 V to 5 V when the O plasma treated Rh
layer was deposited on ITO. Furthermore, the luminance
value of O-RA/ITO is higher than that of /7O at the same

OLEDs Anodes

ITO
RWITO
O:-Rh /ITO

ITO + O: plasma treatment
ITO + O: plasma treatment + deposition of Rh
ITO + O: plasma treatment + deposition of Rh + O: plasma treatment

Table. 2. Current density and luminance value as a function of applied voltage

ITO O=RWITO
Voltage (V) Current density Luminance Current density Luminance
(mA/cm?) (Cd/m?) (mA/cm?) (Cd/m?)
8 5.57 280 6.5 300
10 14.96 730 19.81 740
12 37.82 1400 51.44 1600
14 66.59 1920 12241 2100
16 131.01 2680 271.59 2800
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Fig. 1. (a) Rh 3d core level spectra and (b} relative change of valence
band maximum for the samples
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Fig. 2. C 1s core level spectra for (a) ITO and (b) O-RH/ITO

applied voltage. The decrease in turn-on voltage is a
reflection of improved hole injection efficiency. It is
thought that holes were effectively injected from anode to
organic layer, promoting internal quantum efficiency.
Figure 1(a) shows Rh 3d core level spectra of RW/ITO
and O:-RA/ITO. The Rh 3ds» and Rh 3ds» peaks shifted
about 1.5 eV toward a higher binding energy after O:
plasma treatment. It is reported that the binding energy of
Rh-O bond is 1.4 ~ 1.6 eV higher than that of the Rh-Rh
bond{6]. Thus, the shift of Rh 3ds» and Rh 3ds- peaks is
due to the formation of RhOx layers. Figure 1(b) shows the
relative change in valence band maximum (VBM) with the
formation of RhOx layer. The VBM was calibrated with a
clean Au surface. The VBM at the surface of ITO is
located at 3.0 ¢V apart from the Fermi level. After the Rh
layer deposition on ITO surface, the VBM of RW/ITO

coincided with Fermi level, showing the metallic valance
band. However, the VBM of O:-RA/ITO is located at 0.4
eV apart from the Fermi level. This means that the band
gap was produced due to the formation of RhOx.

Figure 2 shows the change of C 1s SRPES spectra
according to the deposition steps of o-NPD on (a) /TO and
(b) O-RWITO. In order to separate the chemical bonding
states including those in the spectra, the spectral line shape
was simulated using a suitable combination of Gaussian
and Lorentzian functions. The C 1s peak separated into
two components. Bulk component of C-O and surface
component of C-C were considered. The binding energy of
the C-O bond was higher than that of the C-C one, which
agrees well with a previously reported value[6]. At as-
deposited state, C 1s peak is wholly composed of C-O
bond. According to deposition of a-NPD on both samples,
the peak intensity increased due to the composition of o~
NPD. In ITO sample, the peak corresponding to the C-C
bond shifted about 0.3 eV toward higher binding energy,
meaning the downward band bending. Howevér, in O»-
RK/ITO sample, the C-C bond peak shifted about 0.1 eV
toward lower binding energy, indicating the upward band
bending.

In order to clarify the change of work function with
deposition of a-NPD on ITO, the SRPES spectra of
secondary electron were measured, as shown in Fig. 3(a).
The onset of secondary electrons was determined by
extrapolating two solid lines from the background and
straight onset in the spectra[7]. The onset of secondary
electron peak shifted toward lower kinetic energy by 0.6
eV after deposition of a-NPD, meaning the decrease of
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Fig. 3. (a) Secondary electron emission spectra and (b) valence band
spectra for /TO
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Fig. 4. (a) Secondary electron-emission spectra and (b) valence band
spectra for O-RWITO

work function. Figure 3(b) shows the change of valence
band spectra with deposition of a-NPD. Before deposition
of 0-NPD, VBM was located at 2.5 eV, showing that the
energy difference between VBM of ITO and Fermi level
(Er) is 2.5 eV. After deposition of a-NPD, VBM was
located at 2.1 eV, meaning that the energy difference
between highest occupied molecular orbital (HOMO) and
Er of a-NPD on /TO is 2.1 eV. This result showed that
hole injection barrier from ITO to o-NPD is 2.1 eV.

Figure 4(a) shows the change of work function with
deposition of o-NPD on O--RWITO. 1t is shown that the
onset of secondary electron for O:-RA/ITO shifted to the
higher kinetic energy by 0.2 eV with respect to the onset
for ITO. This result means that the work function of RhOx-
coated ITO is higher by 0.2 eV than that of O: plasma
treated ITO. The onset of the secondary electron peak
shifted toward lower kinetic energy about 0.2 eV after
deposition of a-NPD, meaning the decrease of work
function. The change of VBM with deposition of o-NPD
was shown in Fig. 4(b). Before deposition of a-NPD on
O:-RH/ITO, VBM was located at 0.4 eV due to the band
gap of RhOx. After deposition of a-NPD, VBM was
located at 1.9 eV, meaning that the HOMO level of -
NPD was located at 1.9 eV apart from EF. This result
indicated that hole injection barrier from O:-RA/ITO to o-
NPDis1.9eV.

Based on these experimental observations, the
reduction in operation voltage could be explained as
below. As the thickness of a-NPD on /TO increases, the
core level peaks shift to the higher binding energy abouit
0.3 eV [Fig. 2(a)], indicating the downward band bending
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Fig. 5. Schematic band diagram: (a) /7O and (b) O:-RW/ITO

in o-NPD along from the interface to the surface. The
onset of secondary emission in /70 shifted to lower kinetic
energy about 0.6 eV with deposition of o-NPD [Fig. 3(a)],
indicating the decrease of the work function on the surface
of a-NPD. Considering the band bending of 0.3 eV toward
the a-NPD, A is determined to be - 0.3 €V, as shown in
Fig. 5(a). Figure 5(b) shows the schematic band diagram in
deposition of @-NPD on O:-RA/ITO anode. When the Rh
layer changed to a transparent RhOx layer by O: plasma
treatment, the work function increased. The work function
of O:-RA/ITO is higher by 0.2 eV than that of ITO. The
amount of band bending and the change of work function
with deposition of o-NPD are 0.1 eV [Fig. 2(b)] and 0.2
eV [Fig. 4(a)], respectively. Thus, the value of A produced
at the interface of O:-RA/ITO with o-NPD corresponds to -
0.3 eV, as shown in Fig. 5(b).

It was previously reported that the higher work
function of metal substrate is, the higher A exists due to
the more sensitive electron density tail[8]. However, the
value of A is same in our case even though the work
function of O:-RA/ITO is higher than that of ITQO, as shown
in Figs. 7(a) and 7(b). In the metal-organic system, the
metal work function could be changed with surface-dipole
which originates from the tail of free electrons[9]. The
contribution of surface-dipole could be modified by the
presence of an adsorbate. The 2-nm-thick RhOx has much
fewer free electrons than the metals[10], resulting in the
reduced contribution of surface electron tail. As a result, A
in Ox-RK/ITO coincides with the A in IT0O. Consequently,
RhOx layer plays a role in increasing the work-function of
electrode, leading to the decrease of the hole injection
barrier from 2.1 to 1.9 eV. Therefore, the turn-on voltage
of OLEDs using O-RA/ITO decreased from 7 Vto 5 V.
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IV. CONCLUSIONS

We have reported the advantage of interfacial RhOx
layers between anodes of ITOs and hole transport layers of
o-NPD on the electrical properties of OLEDs. The turn-on
voltage of OLEDs decreased from 7 V to 5 V and
luminance value increased as the RhO« layer exists
between ITO and o-NPD. SRPES spectra showed that the
dipole energies of both ITO and O:-RAW/ITO were same
with each other, - 0.3 eV. The work function of 0.-NPD on
O:-RK/ITO is higher by 0.2 eV than that on /70. Thus, the
RhOx layer lowered the potential barrier for hole injection
from ITO to o-NPD, reducing the turn-on voltage of
OLEDs and increasing quantum efficiency.
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