확률의 상관 빈도이론과 포퍼

  • 발행 : 2005.02.28

초록

이 글의 목적은 포퍼의 초기의 확률론, 즉 $\ll$탐구의 논리$\gg$에서 제시된 상관 빈도 이론에 대해서 살펴보고 평가하는 것이다. 이를 위해서 우선 빈도 이론을 가장 체계적으로 제시한 폰 미제스의 빈도 이론에 대 해서 자세하게 논의한다. 빈도 이론에 대한 일반적인 비판은 유한한 경험적 집산이 어떻게 무한 계열인 수학적 집산으로 표상되는가와 무작위성의 공리가 어떻게 수학적으로 정식화하는가의 문제이다. 폰 미제스는 이러한 비판에 답하면서 빈도이론을 발전시켜나간다. 그러나 그의 빈도 이론에는 무작위성의 공리와 수렴성의 공리가 양립가능하지 많은 것처럼 보인다는 문제가 있다. 객관주의 확률론의 옹호자로서 포퍼는 이와 같은 문제가 해 결된 빈도 이론을 제시하고자 했다. 포퍼는 대담하게 수렴성의 공리를 완전히 포기하고 무작위성의 공리를 개선함으로써 이 문제를 해결할 수 있다고 주장한다. 그는 서수선택과 이웃선택이라는 위치선택 개념을 통해서 무 작위성의 공리를 보다 약화된 조건으로 수정하고 그 공리로부터 베르누이의 정리를 연역해 냄으로써 수렴성의 공리가 불필요함을 보인다. 결국 포퍼는 폰 미제스의 빈도이론의 치명적인 문제라고 여겨졌던 두 공리 사이의 비일관성 문제를 해결했다고 할 수 있다. 그럼에도 불구하고 포퍼의 수정된 빈도이론은 빈도이론의 기초가 된다고 생각되는 수렴성의 공리를 포기하는 반직관적인 이론이라는 비판을 피할 길이 없어 보이고, 그런 이유 때문에 포퍼의 빈도이론은 별로 주목을 받지 못한 것이다. 보다 직관적으로 설득력 있는 빈도 이론은 무작위성의 공리를 수렴성 공리와 일관성을 갖도록 정식화하여 제시하는 이론이다.

The purpose of the paper Is to discuss and estimate early Popper's theory of probability, which is presented in his book, The Logic of of Scientific Discovery. For this, Von Mises' frequency theory shall be discussed in detail, which is regarded as the most systematic and sophisticated frequency theory among others. Von Mises developed his theory to response to various critical questions such as how finite and empirical collectives can be represented in terms of infinite and mathematical collectives, and how the axiom of randomness can be mathematically formulated. But his theory still has another difficulty, which is concerned with the inconsistency between the axiom of convergence and the axiom of randomness. Defending the objective theory of probability, Popper tries to present his own frequency theory, solving the difficulty. He suggests that the axiom of convergence be given up and that the axiom of randomness be modified to solve Von Mises' problem. That is, Popper introduces the notion of ordinal selection and neighborhood selection to modify the axiom of randomness. He then shows that Bernoulli's theorem is derived from the modified axiom. Consequently, it can be said that Popper solves the problem of inconsistency which is regarded as crucial to Von Mises' theory. However, Popper's suggestion has not drawn much attention. I think it is because his theory seems anti-intuitive in the sense that it gives up the axiom of convergence which is the basis of the frequency theory So for more persuasive frequency theory, it is necessary to formulate the axiom of randomness to be consistent with the axiom of convergence.

키워드