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Abstract

When X  and Y  have independent two parameter exponential 
distributions, we develop a Bayesian testing procedures for the equality of 
two location parameters. The reference prior in non-regular exponential 
model is derived. Under this reference prior, we propose a Bayesian test 
procedures for the equality of two location parameters using fractional 
Bayes factor and intrinsic Bayes factor. Simulation study and some real 
data examples are provided.

Keywords : Exponential Location Parameter, Fractional Bayes Factor, 
Intrinsic Bayes Factor, Reference Prior 

1. INTRODUCTION

The two parameter exponential distribution plays an important role in the field 

of life testing and reliability theory since it is the only continuous distribution 

with a constant hazard function. The reciprocal of the scale parameter is the 

hazard rate. The location (threshold) parameter can translate the distribution along 

the time axis, so it is also known as the minimum life or guarantee time 

parameter. The guarantee time parameter can be used to model warranty periods 

for some products.

The present paper focuses on Bayesian testing procedure for the equality of two 

location parameters. In Bayesian testing problem, the Bayes factor under proper 
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priors or informative priors have been very successful. However, limited 

information and time constraints often require the use of noninformative priors. 

Since noninformative priors such as Jeffreys' priors or reference priors (Berger 

and Bernardo, 1989, 1992) are typically improper so that such priors are only 

defined up to arbitrary constants which affects the values of Bayes factors.  

Spiegalhalter and Smith (1982), O'Hagan (1995) and Berger and Pericchi (1996) 

have made efforts to compensate for that arbitrariness.

Berger and Pericchi (1996) introduced the intrinsic Bayes factor using a 

data-splitting idea, which would eliminate the arbitrariness of improper priors. 

O'Hagan (1995) proposed the fractional Bayes factor. To remove the arbitrariness 

in Bayes factor, he used to a portion of the likelihood with a so-called the 

fraction b  (See Sang Gil Kang and Hee Chun Lee (2004)). These two approaches 

mentioned above have shown to be quite useful in many statistical areas.

For the statistical inference of the exponential distribution, Epstein and Tsao 

(1953) studied some statistical tests for two exponential distributions. Epstein and  

Sobel (1954) obtained the minimum variance unbiased estimator for the scale and 

location parameters. The shrinkage estimators for the scale parameter have been 

proposed by Bhattacharya and Srivastava (1974). Chiou and Han (1989) proposed a 

pre-test estimator and a pre-test shrinkage estimator for the location parameter.  

Chiou and Miao (2004) studied the shrinkage estimator for the difference between 

location parameters.

Almost all the work mentioned above is the analysis based on the classical 

point of view, there is a little work on this problem from the viewpoint of the 

objective Bayesian framework. Because the two parameter exponential distribution 

is the non-regular case, so the noninformative priors such as reference prior or 

probability matching prior were hard to derive. Since almost all the theory related 

to these priors were developed based on the assumption of regular distribution. 

Recently, Ghosal (1997, 1999) developed the procedures to derive the reference and 

matching priors for non-regular cases. Using his results, we feel a strong 

necessity to develop objective Bayesian testing procedure for the difference 

between location parameters. For dealing this problem, we use the fractional Bayes 

factor (O'Hagan, 1995) and the intrinsic Bayes factor (Berger and Pericchi, 1996). 

The outline of the remaining sections is as follows. In Section 2, using the 

reference priors, we provide the Bayesian testing procedure based on the fractional 

Bayes factor and intrinsic Bayes factor for the testing equality of two location 

parameters. In Section 3, simulation study and some real examples are given. 

Section 4 devotes some conclusions of our Bayesian test procedure.
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2. BAYESIAN TEST PROCEDURES

2.1 Preliminaries

Models (or Hypotheses) H 1, H 2,…, Hq  are under consideration, with the data 

x =(x1,x2, … ,xn)  having probability density function f i( x∣ θ i)  under model 

Hi,i=1,2,…,q. The parameter vectors θ i  are unknown. Let π i( θ i)  be the 

prior distribution of model Hi, and let p i  be the prior probabilities of  model Hi,

i=1,2,…,q. Then the posterior probability that the model Hi  is true is

P(Hi∣ x)=( ∑
q

j=1

p j
p i
⋅B ji)

-1

,                         (1)

where B ji
 is the Bayes factor of model Hj  to model Hi  defined by

B ji=
mj( x)

mi( x)
=

⌠
⌡f j( x∣ θ j)π j( θ j)d θ j

⌠
⌡f i( x∣ θ i)π i( θ i)d θ i

.                    (2)

The B ji
 interpreted as the comparative support of the data for the model j  to 

i. The computation of B ji
 needs specification of the prior distribution π i( θ i)  

and π j( θ). Usually, one can use the noninformative prior, often improper, such as 

uniform prior, Jeffreys prior, reference prior or probability matching prior. Denote 

it as π
N
i
. The use of improper priors π

N
i (⋅)  in (2) causes the B ji

 to contain 

unspecified constants. To solve this problem, O'Hagan (1995) proposed the 

fractional Bayes factor for Bayesian testing and model selection problem as follow.

When  the πNi ( θ i)  is noninformative prior under Hi, equation  (2) becomes

BNji=

⌠
⌡f j( x∣ θ j)π

N
j ( θ j)d θ j

⌠
⌡f i( x∣ θ i)π

N
i ( θ i)d θ i

.

Then the fractional Bayes factor of model Hj  versus model Hi  is

B Fji=B
N
ji⋅

⌠
⌡f

b
i ( x∣ θ i)π

N
i ( θ i )d θ i

⌠
⌡f
b
j ( x∣ θ j)π

N
j ( θ j)d θ j

,
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and f i( x∣ θ i)  is the likelihood function and b  specifies a fraction of the 

likelihood which is to be used as a prior density. He proposed three ways for the 

choice of the fraction b. One frequently suggested choice is b=m/n, where m  

is the size of the minimal training sample, assuming this is well defined. (see 

O'Hagan, 1995, 1997 and the discussion by Berger and Mortera of O'Hagan, 1995).

Berger and Pericchi (1996) proposed the intrinsic Bayes factor (IBF) for 

Bayesian testing and model selection. The arithmetic intrinsic Bayes factor is 

given by

B Iji=B
N
ji⋅
1
L ∑

L

l=1
BNij( x( l )),

where

BNij( x( l))=
mi( x( l))

mj( x( l))
=

⌠
⌡f i( x( l)∣ θ i)π

N
i ( θ i)d θ i

⌠
⌡f j( x( l)∣ θ j)π

N
j ( θ j)d θ j

.

Here x( l)  is minimal training sample and L  is the number of all possible 

minimal training samples.

2.2 Bayesian Test

Let X  be a two parameter exponential distribution with density function

f(x∣η,θ) =
1
θ
exp {-

x-η
θ

}, x> η, θ> 0,                (3)

where η  is the location parameter (guarantee parameter) and θ  is the scale 

parameter. Suppose that X=(X 1,…,X n 1 )  is a random sample of size n 1  from 

a two parameter exponential distribution with location parameter η 1  and scale 

parameter θ1  and Y=(Y 1,…,Y n 2 )  is a random sample of size n 2  from a two 

parameter exponential distribution with location parameter η 2  and scale parameter 

θ2 . Then the joint probability density function is

f(x, y∣η1,η 2,θ1,θ2) = θ
- n1
1 θ

- n2
2 exp{-

n 1( x-η1)

θ1
-
n 2( y-η2)

θ2
} , 

where θ1 > 0, θ2 > 0 , xi > η 1, i= 1,…,n 1  and yj > η 2, j= 1,…,n 2 , and x  and y  

are the sample mean for each population.
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We want to test the hypotheses H 1:η 1= η 2  vs. H 2:η 1≠η 2 . Our interest is to 

develop a Bayesian test based on the fractional and intrinsic Bayes factors for H 1  

vs. H 2  under the noninformative priors. The two parameter exponential 

distribution is belong to non-regular cases. But for non-regular cases, the 

reference is developed by Ghosal (1997). In our model (3), the reference prior is 

given by π(η,θ) ∝ 1/θ. For details, see Appendix 1.

2.2.1 Bayesian Test using the Fractional Bayes Factor

Under the hypothesis H 1, the reference prior for η(≡η 1=η 2) , θ1  and  θ2  is

π 1(η,θ1 ,θ2)=θ
- 1
1 θ

- 1
2 .

The derivation of the reference prior for η , θ1  and θ2 , and the propriety of  

the posterior distribution under this reference prior are given in Appendix 1. 

The likelihood function under H 1  is

L( η,θ1,θ2∣ x, y ) = θ
- n1
1 θ

- n2
2 exp{-

n 1( x-η)

θ1
-
n 2( y-η)

θ2
}

Then the element of fractional Bayes factor under H 1  is given by

mb1( x, y)=
⌠
⌡

m x, y

0

⌠
⌡

∞

0

⌠
⌡

∞

0
L b(η,θ1,θ2∣ x, y )π 1(η,θ1 ,θ2)dθ1dθ2dη

       = (n1b )
− n 1b(n2b )

− n 2bΓ (n1b )Γ (n2b )
0

mx, y

(x − η )− n 1b(y − η )− n 2bdη,

where m x,y= min 1≤i≤n 1,1≤j≤n 2
{xi,yj} . 

For the H 2, the reference prior for η 1, η 2, θ1  and θ2  is

π 2(η 1 ,η 2,θ1,θ2)=π(η 1,θ1)π( η 2,θ2)=θ
- 1
1 θ

- 1
2 .

The likelihood function under H 2  is

L( η 1,η 2,θ1,θ2∣ x, y ) = θ
- n1
1 θ

- n2
2 exp{-

n 1( x-η1)

θ1
-
n 2( y-η2)

θ2
} .

Thus the element of fractional Bayes factor under H 2  gives as follows.
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m
b
2( x, y)

= ⌠
⌡

m x

0

⌠
⌡

m y

0

⌠
⌡

∞

0

⌠
⌡

∞

0
L b(η 1 ,η 2,θ1,θ2∣ x, y)π 2(η 1 ,η 2,θ1,θ2)dθ2dθ1dη 2dη 1

=
1

(n 1b-1)(n 2b-1)
(n 1b)

- n 1 b
(n 2b)

- n 2 b
Γ(n 1b)Γ(n 2b)

× [ ( x-m x)
- n 1 b+1- ( x)

- n 1 b+1][ ( y-m y)
- n 2 b+1- ( y)

- n 2 b+1],

where m x= min 1≤i≤n 1
{xi}  and m y= min 1≤j≤n 2

{yj} . Therefore the B
N
21
 is 

given by

BN21=
[ ( x-m x)

- n 1+1- ( x)
- n 1+1][ (y-m y)

- n 2+1- ( y)
- n 2+1]

(n 1-1)(n 2-1)S( x, y)
,      (4)

where

S( x, y ) = ⌠
⌡

m x,y

0
( x-η)

- n 1 ( y-η)
- n 2dη.

And

mb1( x, y)

mb2( x, y)
=

(n 1b-1)(n 2b-1)S
b( x, y)

[ ( x-m x)
- n 1 b+1

- x
- n 1 b+1

][ ( y-m y)
- n 2 b+1

- y
- n 2 b+1

]
,

where 

Sb( x, y ) = ⌠
⌡

m x,y

0
( x-η)

- n 1 b ( y-η)
- n 2 bdη.

Thus the fractional Bayes factor of H 2  versus H 1  is given by

  BF21 =
(n1b− 1 )(n2b− 1 )S

b (x,y)

(n1− 1 )(n2− 1 )S(x,y)

×
[ ( x-m x)

- n 1+1
- ( x)

- n 1+1
][ ( y-m y)

- n 2+1
- ( y)

- n 2+1
]

[ ( x-m x)
- n 1 b+1- x

- n 1 b+1][ ( y-m y)
- n 2 b+1- y

- n 2 b+1]
.

Note that the calculation of the fractional Bayes factor of H 2  versus H 1  is 

requires only an one dimensional integration. 

Remark. In the calculation of mb1( x, y), if n 1b  is 1, then m
b
1( x, y)  is 

log( x/( x-mx)) . In the same manner, if n 2b  is 1, then m
b
2( x, y)  is 

log( y/( y-my)) .
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2.2.2 Bayesian Test using the Intrinsic Bayes Factor

The element BN21 , (4), of the intrinsic Bayes factor is computed in the fractional 

Bayes factor. So using minimal training sample, we only calculate the marginal 

densities m
N
(x i,x j,y k,y l)   under H 1  and H 2 , respectively. 

The marginal densities m N
1 (x i,x j,y k,y l)   under H 1  is given by

mN1 (xi,xj,yk,yl) =
⌠
⌡

mx

0

⌠
⌡

∞

0

⌠
⌡

∞

0
f(xi,xj,yk,yl∣η,θ1,θ2)π 1(η,θ1,θ2)dθ1dθ2dη

= ⌠
⌡

mx

0
(xi+xj-2η)

- 2
(yk+yl-2η)

- 2
dη

≡ T(xi,xj,yk,yl),

where 1≤i < j≤n 1,1≤k < l≤n 2 . And the marginal density m
N
2 (x i,x j,y k,y l)  

under H2  is given by

mN2 (xi,xj,yk,yl)

= ⌠
⌡

mx

0

⌠
⌡

my

0

⌠
⌡

∞

0

⌠
⌡

∞

0
f(xi,xj,yk,yl∣η1,η 2,θ1,θ2)π 2(η 1 ,η 2,θ1,θ2)dθ2dθ1dη 2dη 1

=
mxm y

(xi+xj)(yk+yl)(xi+xj-2mx)(yk+yl-2my)
.

Therefore the IBF of H 2  versus H 1  is given by

BI21 =
1
L ∑i, j∑k, l

(xi+xj)(yk+yl)(xi+xj-2mx)(yk+yl-2my)T(xi,xj,yk,yl)

(n 1-1)(n 2-1)S( x,y)

×
[ ( x-m x)

- n 1+1-( x)
- n 1+1][ ( y-m y)

- n 2+1-( y)
- n 2+1]

mxmy
,

where L= n 1(n 1-1)n 2(n 2-1)/4 . Note that the calculation of the IBF of H 2  

versus H 1  is requires a one dimensional integration. 

3. NUMERICAL STUDIES

In this section, we will show the usefulness of our test procedures by 

simulation and real data sets.

Example 1. To illustrate the Bayesian test procedures, we examine the cases 

when (θ1,θ2)=(1,3),(3,1) , ( η 1 ,η 2)= (1,1),(1,2),(1,3)  and (n 1 ,n 2 )= (5,5)



Sang Gil Kang ⋅ Dal Ho Kim ⋅ Woo Dong Lee1102

,( 5,10),(10,10),(10,20) . The posterior probabilities of H 1  being true are 

computed assuming equal prior probabilities. The Table 1 shows that the results 

of the averages and the standard deviations in parentheses of posterior 

probabilities for each case based on 1,000 replications. 

From the Table 1, when ( η 1 ,η 2)= (1,1) , the fractional Bayes factor does not 

select H 1  for some small sample size cases. However the intrinsic Bayes factor 

gives fairly reasonable answers. Also for moderate sample sizes, the fractional and 

intrinsic Bayes factors give fairly reasonable answers.

Table 1: The averages and the standard deviations in parentheses of 

                posterior probabilities

(θ1 ,θ2) ( η 1 ,η 2) (n 1 ,n 2 ) P
F
(H 1∣x, y) P

I
(H 1∣x, y)

1,3 1,1 10,10
10,20
20,10
20,20

0.5491(0.1572)
0.6245(0.1696)
0.5767(0.1704)
0.6683(0.1683)

0.6984(0.1749)
0.7703(0.1713)
0.7232(0.1769)
0.8071(0.1592)

1,2 10,10
10,20
20,10
20,20

0.1786(0.1038)
0.0376(0.0448)
0.1634(0.0938)
0.0304(0.0296)

0.2721(0.1541)
0.0657(0.0713)
0.2686(0.1465)
0.0591(0.0590)

1,3 10,10
10,20
20,10
20,20

0.0482(0.0432)
0.0014(0.0026)
0.0404(0.0380)
0.0012(0.0023)

0.0865(0.0768)
0.0026(0.0051)
0.0852(0.0769)
0.0027(0.0052)

3,1 1,1 10,10
10,20
20,10
20,20

0.5449(0.1616)
0.5755(0.1649)
0.6179(0.1812)
0.6686(0.1757)

0.6900(0.1799)
0.7210(0.1755)
0.7624(0.1812)
0.8050(0.1691)

1,2 10,10
10,20
20,10
20,20

0.0826(0.1671)
0.0237(0.1042)
0.0258(0.0452)
0.0014(0.0110)

0.1021(0.1981)
0.0290(0.1227)
0.0368(0.0635)
0.0019(0.0153)

1,3 10,10
10,20
20,10
20,20

0.0037(0.0277)
0.0005(0.0121)
0.0012(0.0024)
0.0000(0.0000)

0.0042(0.0315)
0.0006(0.0139)
0.0016(0.0035)
0.0000(0.0000)

Example 2. The data in Table 2 is taken from Bain and Engelhardt (1991). 

Suppose a certain additive is proposed for increasing the length of time of tread 

wear of a tire. Suppose 40 of the present and 40 tires made under the new 

process are placed in service and the experiment is continued until the 20 smallest 

observations are obtained for each sample.
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The value of fractional Bayes factor and arithmetic intrinsic Bayes factor of H 2  

versus H 1  is B
F
21= 0.1314  and B

I
21= 0.0563 , respectively. We assume that the 

prior probabilities are equal. Then the posterior probability for H 1  is 0.8839  and 

0.9467 , respectively. Thus there are strong evidence for H 1  in terms of the 

posterior probability. 

Table 2: Length of time of tread wear 

Present

 10.03 10.47 10.58 11.48 11.60 12.41 13.03 13.51

 14.48 16.96 17.08 17.27 17.90 18.21 19.30 20.10 

 20.51 21.78 21.79 25.34

Additive

 10.10 11.01 11.20 12.95 13.19 14.81 16.03 17.01

 18.96 24.10 24.15 24.52 26.05 26.44 28.59 30.24

 31.03 33.51 33.61 40.68

Example 3. The following data are a part of data which shows results of an 

experiment designed to compare the performances of high-speed turbine engine 

bearings made out of 5 different compounds (McCool 1979). The experiment tested 

10 bearings of each type; the times to fatigue failure are given in units of millions 

of cycles. We did goodness-of-fit test of 5 types of data to 2-parameter 

exponential distribution and concluded that type II and type IV were accepted to 

this distribution. We used K-S statistic for the test.

Type II   3.19  4.26  4.47  4.53  4.67  4.69  5.78  6.79  9.37 12.75

Type IV   5.88  6.74  6.90  6.98  7.21  8.14  8.59  9.80 12.28 25.46

The value of fractional Bayes factor and arithmetic intrinsic Bayes factor of H 2  

versus H 1  is B
F
21= 12.771  and B

I
21= 10.0877 , respectively. We assume that 

the prior probabilities are equal. Then the posterior probability for H 1  is 0.0726  

and 0.09019 , respectively.

4. CONCLUSIONS

We developed a Bayesian test procedures for testing the equality of the 

difference of Guarantee time parameters in two parameter exponential distributions. 

The refence prior is developed and posterior propriety is proved. Using this 

reference prior, the intrinsic Bayes factor of Berger and Pericchi (1996) and the 

fractional Bayes factor of O'Hagan (1996) are computed. 
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Through the simulation we can conclude that even for the small sample sizes, 

intrinsic Bayes factor performs better than the fractional Bayes factor. As the 

sample size grows large, the two Bayes factors perform reasonably. So, we 

recommend the use of intrinsic Bayes factors in this case.

APPENDIX 1. Derivation of the Reference prior and Propriety of the 

Posterior Distribution

Following Ghosal (1997) and Sareen (2003), we derive the reference prior of η,  

θ1  and θ2 . The joint density is given by

f( x, y∣η,θ1,θ2) = θ
- n1
1 θ

- n2
2 exp{-

n 1( x-η)

θ1
-
n 2( y-η)

θ2
} .

Now since l(η)= η,

c(η,θ1,θ2) = l '(η)f( l( η)∣η,θ1,θ2)

= θ
- n1
1 θ

- n2
2

= c 1(η)c 2(θ1,θ2),

where c 1(η)=1  and c 2(θ1 ,θ2)=θ
- n 1
1 θ

- n 2
2 .  Moreover, letting θ= (θ1,θ2) ,

J θ,θ = E[
∂
∂θ
log f( x, y∣η,θ)][

∂
∂θ
log f( x, y∣η,θ)]'

= [ ]n 1θ
- 2
1 0

0 n 2θ
- 2
2

.

Thus 

detJ
θ,θ
(η,θ) = n 1n 2θ

- 1
1 θ

- 1
2

= λ 1(η)λ 2(θ),

where λ 1(η)= n 1n 2  and λ 2(θ)= θ
- 1
1 θ

- 1
2 .  Therefore the reference prior η,θ1  

and θ2 . is given by

π(η,θ1,θ2)∝c 1(η) λ 2(θ)= θ
- 1
1 θ

- 1
2 .

Under this reference prior π(η,θ1,θ2)=θ
- 1
1 θ

- 1
2
,  the joint posterior for η,θ1  

and θ2  given x, y  is



Bayesian Test for the Difference of Exponential Guarantee Time Parameters 1105

π(η,θ1 ,θ2∣ x, y ) ∝ θ
- n1-1

1 θ
- n2-1

2 exp {-
n 1( x-η)

θ1
-
n 2( y-η)

θ2
}.    (5)

Integrating with respect to θ1  and θ2  in (5), then

π(η∣x, y)=C 1( x-η)
- n 1 ( y-η)

- n 2,  η≤m x,y.  

where m x,y= min 1≤i≤n 1,1≤j≤n 2
{xi,yj}  and C 1  is a constant. Since

    ( x-η)≤( x-m x, y)  and ( y-η)≤( y-m x,y) , thus

            ⌠
⌡

m x, y

0
π(η∣ x, y )dη≤m x, y( x-m x, y)

- n 1( x-m x, y)
- n 2.

Thus the posterior distribution is proper if n 1≥1  and n 2≥1 . This completes the 

proof.  □
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