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Abstract

In this paper we consider the problem of identifying and testing outliers 
in linear regression. First we consider the use of the so-called scale ratio 
tests  for testing the null hypothesis of no outliers. This test is based on 
the ratio of two residual scale estimates. We show the asymptotic 
distribution of the test statistics and investigate its properties. Next we 
consider the problem of identifying the outliers. A forward sequential 
procedure using the suggested test is proposed. The new method is 
compared with classical procedure in the real data example. Unlike other 
forward procedures, the present one is unaffected by masking and 
swamping effects because the test statistic is based on robust scale 
estimate.

Keywords : Forward sequential procedure, Optimal weight function, 
Outliers detection, Outliers test,  

1. INTRODUCTION

Consider the linear regression model,

y i =  β0+ x i1β 1+ x i2β 2+…+ x ipβ p+ e i ,   i=1,2,…,n                (1)

where the β i's are unknown parameters and the error e i's are independent 

normal random variables with mean zero and variance σ
2 . The classical 

estimators of parameters are the least squares estimator. However, if outliers are 

present in the data, the classical  estimates can be very inaccurate. Intuitively, an 
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outlier is an observation (x i1 ,x i2,…,x ip, y i)  which deviate from the linear 

relation followed by the majority of the data. The non-outlying data will be 

referred to as the good observations. It is assumed that the good data contains 

more data than 50% of the observations in the sample. The problem of detecting 

of outliers has been around for many years. Some techniques have been developed 

to remedy this problem. 

In lower dimension, graphical techniques can be used to detect outliers. When 

the regression model has less than three independent variables, outliers can be 

detected by scatter plots and spin plots. But the degree of outlyingness is based 

on the judgement of the researcher. Unfortunately, when the dimension is greater 

than three, it is difficult to detect the outliers by graphical tool. We have to resort 

to other methods.

There are two general approaches to the problem of detecting outliers, 

regression diagnostics and robust methods of analysis. 

The advantage of a regression diagnostics is that it identifies the outliers and 

allows the researcher how the outliers should dealt with. However, it is difficult to 

detect outliers when there are several of them because the masking and swamping 

effects that outliers can have on the diagnosing procedures.

Robust procedures are devised for the case of several outliers. They are not 

affected by the masking  and swamping effects. They usually result in good 

estimates for the good data when the sample is contaminated but usually lack 

efficiency when the sample is uncontaminated. It is the main problem that robust 

estimation down weighs or completely ignores the outliers. This is not always 

best because any information contained in the outliers is lost.

They attack the problem from opposite points of view and, oddly enough, the 

advantages of one method tend to be the disadvantages of the other. So the two 

approaches to the problem of identifying outliers should be combined to produce a 

diagnostic test that which is not affected by masking and swamping effects. 

Furthermore this test should be applied sequentially in a forward fashion to not 

only detect the outliers but to indicate the number present as well. Furthermore, 

the test have to applied until that it fails to identify the presence of an outlier 

because it should not be fooled by masking and swamping effects.

In this paper, we propose a robust diagnostic tool for detecting and testing 

outliers in a linear regression. This tool is based on the ratio of a robust estimate 

of scale and a non robust one. And then we propose the following forward 

sequential procedure for detecting the outliers. If the null hypothesis is rejected 

then the most extreme observation is removed and the test is applied again to the 

n-1  remaining observations. This procedure is applied iteratively and stops when 

the test is no longer significant.  

The remaining of the paper is organized as follows. In Section 2 we introduce 

the outliers  tests based on the ratio of two different estimate of scale and the 

forward sequential procedure. In Section 3 we derive that the asymptotic 
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distribution of the test statistics under the null hypothesis is normal distribution. 

And we calculate the critical values and powers of  test by Monte Carlo 

simulation. In Section 4  the new method is applied to several real data sets and 

artificial data sets in order to show their performances. Section 5 contains some 

concluding remarks.   

Ⅱ. DETECTION AND TESTING OUTLIERS

We recall the s-estimate method  introduced by Rousseeuw and Yohai(1984). 

Let ρ be a particular optimal symmetric bounded loss function and β̂  be a robust 

estimate, the corresponding robust scale estimate, ŝ(β), is a solution of the 

equation   

1
n∑

n

i=1
ρ( y i-x i β̂s )= 12,                             (2)

where β̂=
arg min
β

s(β) .

We want to  test the hypothesis  

H 0 :  no outlier in data (x i1 ,x i2,…,x ip,y i) , i=1,2,…,n             (3)

H 1 :  some outliers in data (x i1 ,x i2,…,x ip,y i) , i=1,2,…,n  

in the linear regression.

The scale ratio test proposed for testing hypothesis is defined as followings. Let 

s 1  and s 2  be two estimate of scale corresponding to the following ρ-functions. 

Let ρ1  be an optimal weight function introduced in Yohai and Zamar(1998). 

ρ1(⋅;c) and derivative of ρ1(⋅;c), ψ1(⋅;c)  are as follows:

ρ 1(x ;c)=

ꀊ

ꀖ

ꀈ

︳︳︳︳︳

︳︳︳︳︳

3.25c 2 if  |
x
c
| > 3

c 2[1.792-0.972(
x
c
)
2+0.432(

x
c
)
4-0.052(

x
c
)
6+0.002(

x
c
)
8 if  2 <|

x
c
|≤3

x 2

2
if  |
x
c
|≤2

  (4)

and 
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ψ 1(x ; c)=

ꀊ

ꀖ

ꀈ

︳︳︳︳︳

︳︳︳︳︳

0 if  |
x
c
| > 3

c[-1.944 (
x
c
)+1.728(

x
c
) 3-0.312 (

x
c
) 5+0.016(

x
c
) 7 if  2 <|

x
c
|≤3

x if  |
x
c
|≤2

.  

(5)

They showed that the function given above are optimal in following highly 

desirable sense: the final M-estimate has a breakdown point of one-half, and 

minimizes the maximum bias under contamination distributions, subject to 

achieving a desired efficiency when the data is Gaussian.

Let β̂  be a robust estimate, the corresponding robust scale estimate, s1 (β), is a 

solution of the equation:   

1
n∑

n

i=1
ρ1( y i-x i β̂s 1 )= 12 .                             (6)

Let ρ 2  be the unbounded function. ρ2(⋅)  and ψ2(⋅)  are as follows:  

ρ 2(x)= x
2                                  (7)

and ψ2(x)=ρ
'
2(x)=2x.

Let β̃ be a non-robust estimate, the corresponding robust scale estimate, s2 (β), 

is a solution of the equation:

1
n∑

n

i=1
ρ2( y i-x i β̃s 2 )=1.                             (8)

Here, s1  is the robust estimate of residuals scale with a breakdown point 

against outliers of about 50% and s2  is the non-robust one of residuals scale 

since ρ 2  is unbounded. The scale ratio test statistic is defined as 

R=s 2/s 1.                                  (9)

The null hypothesis is rejected for large value of R.. The critical values 

approximated by Monte Carlo simulation using 1000 replicates are presented in 

Table 1, for sample size up to 30. For large sample sizes, the asymptotic 

approximation,

R α=1+0.7045n
-1/2Z α                           (10)
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can be used where Zα is 100( 1-α)- th percentile of standard normal distribution 

and n is the sample size used to compute the test statistics. The facts given 

above are detailed in next section.

When the null hypothesis is  rejected, there is no indication of how many or 

which points are outliers. To solve this problem, we suggest to use this test 

sequentially in forward sequential procedure to identify the outliers. If the test  

rejects the null hypothesis then the point with the largest D=|sort(r i)-Med(r i)|  

is defined as an outlier. Where r i= y i- β̂ x i  and β̂  is a robust estimate of 

regression coefficients β  and sort(r i)  is the sort of r i  and Med(r i)  is the 

median of r i. The observation detected as an outlier is removed and the test is 

applied again to the n-1 remaining observations. The procedure is repeated and 

stops when the test is no longer significant. 

Ⅲ. PROPERTIES OF THE TEST STATISTIC

In this section we consider the properties of the proposed test. First we obtain 

the limiting distribution of test statistics under the null hypotheses. Observe that 

the test statistics n 1/2{ (s2/s1)-1}  and n( s 2- s 1)  are equivalent under null 

hypothesis. The Taylor expansion of equation (6) about β̂=β0=0
 and s 1= s 0=1 

gives, 

1
2
=
1
n ∑

ρ1( y i)  - β̂
1
n∑ρ1'(yi)xi

 - (s1-1)
1
n ∑ρ1'(yi)(yi)+…

        (11)

Since n1/2β̂  is asymptotically normal, the law of large number implies

n
-
1
2 β̂∑ρ1'(yi)xi  →  0  in probability as n → ∞                  (12)

and

1
n∑ρ1'(yi)(yi)

  →  Eρ1'(y)(y) almost surely as n → ∞.            (13)  

Thus, using equation (11) - (13) we have the following asymptotic equivalence

n(s 1-1)≈
n[ 1n ∑ρ1 (y i)-

1
2 ]

Eρ1' (y)⋅y
.                       (14)
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By central limit theorem

n( s 1-1) → N(0,V)                              (15)

where

V=

⌠
⌡

∞

-∞
[ρ 1(y)-E Φ (ρ 1(y))]

2
φ(y)dy

{⌠⌡
∞

-∞
ρ 1'(y)⋅yφ(y)dy}

2 .

Similarly 

n(s 2-1) → N(0,
1
2
)  .                       (16)

So, under the null hypothesis

n
1
2 { (s2/s1)-1} → N( 0,τ

2)                       (17)

where

τ 2=V -
{⌠⌡

∞

-∞
ρ 1(y)⋅y

2
⋅φ(y)dy-⌠

⌡

∞

-∞
ρ 1(y)⋅y⋅φ(y)dy}

⌠
⌡

∞

-∞
ρ 1'(y)⋅y⋅φ(y)dy

+
1
2
,

and φ(⋅)  is probability density function of standard normal.

Next, we calculate the critical values for the test. For this purpose, we generate 

samples for various situations in the following situation,

y i= x i1+x i2+…+x ip+ e i,                       (18)

in which e i∼N(0,1)  and the explanatory variables are generated as 

x ij∼N(0,100)  for j=1,2,…,p. Using 1000 replicates for each sampling situation 

we compute the critical values for the test. A summary of our results for 

explanatory variables up to 4  and sample size up to 30 is presented in the Table 

1. When n equals 50, R0.01=1.231, R0.05=1.164,  andR0.1=1.127. Finally, we 

consider the power of the test for various situation. First, we  generate a sample 

as e i∼N(0,1)  and x ij∼N(0,100). Second, to construct outliers in the  

independent variables space, we generate samples where (1-α)×100%  of the 
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cases are as in the first situation. α×100%  are generated as e i∼N(0,1)  and 

x ij∼N(μ,100). Finally, we make the outliers in response variable space. For this 

purpose, (1-α)×100%  of the cases are again as in the first situation. α×100%  

are generated as  e i∼N(μ,1)  and x ij∼N(0,100) .

Using 1000 replicates for each sampling situation, we compute the power of the 

test. The results for two outliers, various magnitude of outlier, number of 

explanatory variables 1 and sample size 25 are presented in the Table 2. The 

power of the test increases with sample size and magnitude of outliers.

Table 1. Critical values for the proposed test 

Sample

sizes

Number of explanatory variable

1 2 3 4

α level α level α level α level
0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

5 2.334 1.871 1.543 2.474 1.909 1.597 2.594 1.929 1.618 2.619 1.945 1.639

6 2.259 1.637 1.431 2.366 1.788 1.483 2.484 1.809 1.503 2.603 1.827 1.523

7 2.064 1.577 1.421 2.364 1.755 1.456 2.385 1.777 1.479 2.415 1.795 1.495

8 2.060 1.557 1.413 2.292 1.734 1.452 2.313 1.756 1.477 2.324 1.756 1490

9 1.939 1.555 1.413 2.138 1.612 1.421 2.159 1.634 1.441 2.179 1.654 1.463

10 1.784 1.531 1.405 1.888 1.558 1.423 2.090 1.604 1.426 2.186 1.627 1.445

11 1.748 1.531 1.380 1.834 1.471 1.392 1.954 1.591 1.412 1.976 1.612 1.432

12 1.745 1.522 1.378 1.811 1.462 1.381 1.931 1.582 1.402 1.956 1.603 1.422

13 1.725 1.498 1.369 1.802 1.443 1.371 1.822 1.562 1.394 1.846 1.582 1.412

14 1.679 1.472 1.367 1.785 1.433 1.370 1.705 1.554 1.390 1.728 1.578 1.410

15 1.650 1.464 1.348 1.721 1.424 1.354 1.643 1.523 1.376 1.691 1543 1.410

16 1.546 1.412 1.315 1.600 1.385 1.351 1.520 1.459 1.371 1.681 1.525 1.398

17 1.468 1.375 1.308 1.473 1.365 1.346 1.505 1.426 1.368 1.528 1.447 1.396

18 1.441 1.357 1.297 1.449 1.362 1.334 1.493 1.405 1.346 1.504 1.435 1.386

19 1.417 1.333 1.265 1.438 1.355 1.316 1.448 1.385 1.336 1.484 1.405 1.365

20 1.392 1.300 1.237 1.400 1.345 1.262 1.429 1.375 1.326 1.474 1.405 1.355

21 1.369 1.298 1.233 1.367 1.332 1.254 1.419 1.365 1.306 1.454 1.378 1.336

22 1.347 1.294 1.229 1.362 1.310 1.250 1.413 1.358 1.303 1.449 1.370 1.329

23 1.334 1.286 1.220 1.357 1.307 1.243 1.406 1.347 1.300 1.446 1.365 1.324

24 1.327 1.267 1.217 1.348 1.307 1.240 1.402 1.342 1.295 1.431 1.364 1.324

25 1.305 1.241 1.205 1.342 1.305 1.237 1.399 1.340 1.287 1.429 1.359 1.320

26 1.291 1.245 1.196 1.335 1.294 1.235 1.387 1.340 1.275 1.421 1.351 1.317

27 1.285 1.235 1.194 1.326 1.287 1.230 1.374 1.334 1.274 1.415 1.350 1.310

28 1.277 1.227 1.182 1.311 1.265 1.228 1.370 1.330 1.271 1.409 1.347 1.306

29 1.260 1.222 1.178 1.301 1.261 1.221 1.365 1.327 1.271 1.391 1.347 1.301

30 1.256 1.219 1.172 1.266 1.231 1.185 1.362 1.321 1.269 1.388 1.344 1.298
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Table 2. Estimated powers of the proposed test(n=25, p=1, two outliers)

magnitude 

of outliers

magnitude of outliers

20 30 40 50

significant level significant level significant level significant level

0.1    0.05    0.01 0.1    0.05    0.01 0.1    0.05    0.01 0.1    0.05    0.01

20 0.965  0.943  0.938 0.995  0.993  0.988 0.998  0.997  0.996 1.00   1.00   1.00

30 0.966  0.955  0.944 0.996  0.994   0.99 0.999  0.998  0.997 1.00   1.00   1.00

40 0.969  0.957  0.950 1.00   0.999  0.995 1.00   1.00   1.00 1.00   1.00   1.00

50 0.970  0.962  0.954 1.00   0.999  0.995 1.00   1.00   1.00 1.00   1.00   1.00

60 0.973  0.966  0.958 1.00   1.00   0.996 1.00   1.00   1.00 1.00   1.00   1.00

70 0.975  0.973  0.963 1.00   1.00   0.997 1.00   1.00   1.00  1.00   1.00   1.00

80 0.977  0.975  0.967 1.00   1.00   0.998  1.00   1.00   1.00 1.00   1.00   1.00

90 0.983  0.977  0.972 1.00   1.00   1.00 1.00   1.00   1.00 1.00   1.00   1.00

100 0.991  0.985  0.983 1.00   1.00   1.00 1.00   1.00   1.00  1.00   1.00   1.00

  

continue(Table 2)

magnitude 

of outliers

magnitude of outliers

60 70 80 90

significant level significant level significant level significant level

0.1    0.05    0.01 0.1    0.05    0.01 0.1    0.05    0.01 0.1    0.05    0.01

20 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

30 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

40 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

50 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

60 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.00 1.000  1.000  1.000

70 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

80 1.000  1.000  1.000 1.000  1.000  1.000  1.000  1.000  1.000 1.000  1.000  1.000

90 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

100 1.000  1.000  1.000 1.000  1.000  1.00 1.000  1.000  1.000 1.000  1.000  1.000

Ⅳ. APPLICATIONS OF THE PROPOSED TEST

In this section, the proposed test is applied to several data sets for the purpose 

of testing and detecting outliers.

Example 1 ( Annual Rates of Growth of Prices in China) 

The application begins by applying the test to the annual rates of growth of 

prices in China  data given by Simkin(1978). Rousseew and Leroy(1987) used 

these data to illustrate the need for robust regression technique. For instance, in 

1940 prices went up 1.62% as compared to the previous year. But a huge jump 

occurred in 1948. The data appear in the Table 3. The results applied the forward 

sequential procedure and robust method to this data are in Table 4.
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Table 3. Annual Rates of Growth of Prices in China

index Year(x) Growth of Prices

1 40 1.62

2 41 1.63

3 42 1.90

4 43 2.64

5 44 2.05

6 45 2.13

7 46 1.94

8 47 15.50

9 48 364.00

Table 4. The results for the forward sequential procedure  and robust method

sample 

size

observation 

selected

proposed test 

statistics

critical values
Robust( ri/s)

 0.01    0.05 0.1

9 9 299.089 1.939    1.555 1.413 2706.337

8 8 11.664 2.060   1.557 1.413 100.022

7 4 2.089 2.064 1.577 1.421 5.684

6 7 1.136 2.259 1.637 1.431 0.942

In the Table 4, the test is highly significant for observation 9 followed by 

observation 8, and observation 4, This test identifies observation 9, 8, and 4 as 

outliers. When the test is applied to the remaining 6 observations, null hypothesis 

is not rejected. This result confirms the conclusion drawn from the standardized 

LMS(least median squares) residual. 

Example 2 (Number of Fire in 1976-1980)

This data set shows the trend from 1976 to 1980 of number of reported claims 

of Belgian fire insurance companies. One notices a slight upward trend the years. 

Rousseew and Leroy(1987) used these data to illustrate the need for robust 

regression technique. The data appear in the Table 5.
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Table 5. Number of Fire Claims in Belgium from 1976 to 1980 

index Year(x) Number of Fires

1 76 16,694

2 77 12,271

3 78 12,904

4 79 14,036

5 80 13,874

The results applied the forward sequential procedure  and robust method to this 

data are in Table 6.

  

Table 6. The results for the forward sequential procedure  and robust method

sample 

size

observation 

selected

proposed test 

statistics

critical values
Robust( ri/s)

 0.01    0.05 0.1

5 1 2.353 2.334    1.871 1.543 9.987

4 4 0.729 2.560   1.957 1.613 0.754

In the Table 6, the test is highly significant for observation 1. This test 

identifies observation 1 as outliers. When the test is applied to the remaining 4 

observations, null hypothesis is not rejected. This result confirms the conclusion 

drawn from the standardized LMS residual. 

Example 3 ( Stackloss Data)

The second application for testing and detecting outliers comes from the 

Brownlee(1965). The data is well-known stackloss data set. We have selected this 

example because it is a set of real data and it is examined by many statisticians. 

Most people concluded  that observation 1,

3, 4, and 21 were outliers. Some people reported that observation 2 was outlier. 

The data are shown in the Table 7. The result applied the forward sequential 

procedure and robust method to this data appear in the Table 8. In the Table 8, 

observation 21 is the most extreme followed by observation 4, observation 1, 

observation 3 and observation 2. The test identifies observation 21, 4, 1, and 3  as 

outliers.  When the test is applied to the remaining 17 observations, null 

hypothesis is not rejected. Hence observation 2 is not a outlier. This result 

confirms the conclusion drawn from the standardized LMS residual. And It is the 

same to conclusion that most people reported. 
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Table 7. Stackloss data

index
rate 

(x1)

temper- 

ature(x2)

acid concen-

tration(x3)

stackloss

(y)
index

rate

(x1)

temper- 

ature(x2)

acid concen- 

tration(x3)

stackloss

(y)

1 80 27 89 42 12 58 17 88 13

2 80 27 88 37 13 58 18 82 11

3 75 25 90 37 14 58 19 93 12

4 62 24 87 28 15 50 18 89 8

5 62 22 87 18 16 50 18 86 7

6 62 23 87 18 17 50 19 72 8

7 62 24 93 19 18 50 19 79 8

8 62 24 93 20 19 50 20 80 9

9 58 23 87 15 20 56 20 82 15

10 58 18 80 14 21 70 20 91 15

11 58 18 89 14

Table 8. The result applied the forward sequential procedure and robust method 

to the stackloss data

Sample size
observation 

selected

proposed test 

statistics

Critical Values
Robust( ri/s)0.01 0.05 0.10

21 21 1.7655 1.416 1.365 1.306 6.832

20 4 1.5459 1.429 1.375 1.326 7.245

19 1 1.4720 1.448 1.385 1.336 6.417

18 3 1.6047 1.493 1.405 1.346 6.210

17 2 1.236 1.505 1.426 1.368 2.277

Example 4 (Wood Specific Gravity)

Let us look at a finally example containing multidimensional real data. These 

data came from Draper and Smith(1966) and were used to determine the influence 

of anatomical factors on wood specific gravity. Rousseeuw and Leroy(1987) used a 

contaminated version of these data to compare the various diagnostic. These 

contaminated data is the outliers that are not outlying in any of the individual 

variables.

The result for comparing the various diagnostic appear in the table 10. The 

contaminated data is shown in the table 9. We applied the forward sequential 

procedure to the contaminated data . The result is listed in  the table 10.  

In the table 11, diagnostics based on least squares estimate did not succeed in 

identifying the actual contaminated observations, because they are susceptible to 

masking effect. But the standardized LMS(least median of squares)residuals and 

the resistant diagnostic suggested by Rousseeuw and Leroy identify the 

contaminated data 4, 6, 8, and 19 as the outliers.

In the table 10, Observation 19 is the most extreme followed by observation 6, 
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observation 8, observation 4 and observation 13. Because the test does not reject 

null hypothesis at significant 0.01  observation 13 is not an outlier. This test 

identify observation 19, 6, 8 and 4 as outliers. This result confirms the conclusions 

drawn from the standardized LMS residuals and the resistant diagnostic.

The above some examples confirmed that the forward sequential procedure 

based on robust estimate of scale is not affected by masking effects.

Table 9. Contaminated Data on Wood Specific Gravity

Index x 1 x 2 x 3 x 4 x 5 y
1 0.5730 0.1059 0.4650 0.5380 0.8410 0.5340

2 0.6510 0.1356 0.5270 0.5450 0.8870 0.5350

3 0.6060 0.1273 0.4940 0.5210 0.9200 0.5700

4 0.4370 0.1591 0.4460 0.4230 0.9920 0.4500

5 0.5470 0.1135 0.5310 0.5190 0.9150 0.5480

6 0.4440 0.1628 0.4290 0.4110 0.9840 0.4310

7 0.4890 0.1231 0.5620 0.4550 0.8240 0.4810

8 0.4130 0.1673 0.4180 0.4300 0.9780 0.4230

9 0.5360 0.1182 0.5920 0.4640 0.8540 0.4750

10 0.6850 0.1564 0.6310 0.5640 0.9140 0.4860

11 0.6640 0.1588 0.5060 0.4810 0.8670 0.5540

12 0.7030 0.1335 0.5190 0.4840 0.8120 0.5190

13 0.6530 0.1395 0.6250 0.5190 0.8920 0.4290

14 0.5860 0.1114 0.5050 0.5650 0.8890 0.5170

15 0.5340 0.1143 0.5210 0.5700 0.8890 0.5020

16 0.5230 0.1320 0.5050 0.6120 0.9190 0.5080

17 0.5800 0.1249 0.5460 0.6080 0.9540 0.5200

18 0.4480 0.1028 0.5220 0.5340 0.9180 0.5060

19 0.4170 0.1687 0.4050 0.4150 0.9810 0.4010

20 0.5280 0.1057 0.4240 0.5660 0.9090 0.5680

  

Table 10.  Forward sequential procedure Test for the Data in table 9

Sample size
observation 

selected

scale ratio 

statistics

Critical Values

0.01 0.05 0.10

20 19 1.867 1.584 1.515 1.465

19 6 2.144 1.718 1.645 1.595

18 8 2.525 1.847 1.772 1.712

17 4 2.772 1.977 1.892 1.833

16 13 1.557 1.981 1.922 1.863
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Table 11. Diagnostics for the Data in Table 9[ h ii  ; Squared Mahalanobis 

Distance; Standardized, Studentized, and Jackknifed Ls Residuals; CD 2(i); 

DFFITS; DFBETAS; Standardized LMS Residuals, RDi]

index

i

Based on Lesat squares method Robust

h ii

0.600

MD2i

11.07

r i/s

2.50

t i

2.50

t( i)

2.50

CD 2(i)

1.00

DFFITS

1.095

DFBETAS(0.447)
r i/s

2.50

RDi

2.50β 1 β 2 β 3 β 4 β 5 Const.

1 0.278 4.327 -0.73 -0.85 -0.84 0.047 -0.524 -0.004 0.055 0.328 -0.052 0.215 -0.347 -0.16 0.798

2 0.132 1.552 0.05 0.05 0.05 0.000 0.019 0.009 0.002 -0.005 0.002 0.000 -0.003 0.00 0.701

3 0.220 3.224 1.24 1.41 1.46 0.093 0.776 -0.651 -0.523 -0.206 -0.429 0.549 -0.356 0.55 0.577

4 0.258 3.959 0.35 0.41 0.40 0.010 0.236 0.035 -0.049 0.015 -0.105 0.118 -0.074 -14.79 3.938

5 0.223 3.277 1.00 1.14 1.15 0.062 0.615 0.286 -0.517 0.164 -0.388 0.437 -0.244 1.75 0.605

6 0.259 3.974 -0.45 -0.53 -0.51 0.016 -0.302 -0.053 0.037 0.035 0.130 -0.113 0.050 -17.68 4.520

7 0.530 9.124 0.91 1.32 1.36 0.329 1.448 -0.956 0.424 0.521 0.133 -0.964 1.027 0.73 1.421

8 0.289 4.536 -0.03 -0.04 -0.04 0.000 -0.025 0.011 -0.012 0.005 -0.005 0.006 -0.005 -17.31 4.466

9 0.348 5.665 -0.40 -0.49 -0.48 0.021 -0.348 0.052 0.105 -0.224 0.161 0.007 -0.075 -0.73 1.243

10 0.449 7.588 -0.42 -0.56 -0.55 0.043 -0.492 -0.008 -0.198 -0.256 -0.137 -0.029 0.257 -0.40 1.267

11 0.317 5.075 1.99 2.40 3.02 0.447 2.059 0.425 0.970 0.748 0.198 -0.800 0.521 0.00 1.258

12 0.410 6.833 -1.20 -1.56 -1.65 0.281 -1.376 -0.597 0.013 0.556 0.359 0.368 -0.566 -1.88 1.030

13 0.287 4.506 -0.49 -0.58 -0.56 0.022 -0.356 -0.098 0.045 -0.251 0.106 -0.121 0.180 0.00 1.015

14 0.129 1.500 -1.26 -1.35 -1.40 0.045 -0.537 -0.169 0.228 0.178 -0.006 -0.103 0.021 -1.30 0.668

15 0.152 1.945 -0.59 -0.64 -0.62 0.012 -0.264 0.148 -0.061 -0.011 -0.162 0.108 -0.073 -0.34 0.465

16 0.526 9.049 0.52 0.76 0.75 0.107 0.789 -0.529 0.559 -0.052 0.745 -0.432 0.122 0.00 0.865

17 0.289 4.548 -0.25 -0.30 -0.29 0.006 -0.187 -0.019 0.019 -0.044 -0.055 -0.086 0.133 0.00 0.802

18 0.294 4.637 0.28 0.34 0.33 0.008 0.211 -0.062 -0.096 0.081 -0.024 0.045 -0.002 -0.21 0.985

19 0.292 4.599 -1.08 -1.29 -1.32 0.114 -0.849 0.195 -0.287 0.231 -0.024 0.079 -0.128 -20.84 5.201

20 0.318 5.084 0.55 0.66 0.65 0.034 0.441 0.092 -0.154 -0.305 0.037 0.046 0.064 0.00 0.816

Ⅴ. CONCLUDING REMARKS

It is very important to test and detect the multiple outliers in linear regression. 

Several diagnostic measures based on the resulting from the least squares 

estimate have been proposed to identify the multiple outliers. However, the 

accuracy of diagnostic measures is very suspect because these can be severely 

affected by the masking and swamping effects. This inaccuracy can seriously 

affect their performance. 

In this paper, we proposed the forward sequential test for testing and detecting 

the multiple outliers. This was founded on a robust estimate of scale. 
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In principle, the forward sequential test set up a natural simple approach for 

identifying the multiple outliers. However, if the forward sequential test is founded 

on the resulting from the least squares estimate, it can be seriously affected by 

the masking and swamping effects. 

On the other hand, if the forward sequential test is founded on a robust 

estimate of scale, like the test proposed in this paper, the problem for the masking 

and swamping effects can be overcome.

We proved that the proposed forward sequential test was not affected by the 

masking and swamping effects through the Monte Carlo results and numerical 

examples. These suggest that the proposed test provides a conservative and fairly 

powerful method for the detection of the multiple outliers in linear regression. 
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