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Lindley Type Estimators When the Norm is Restricted 

to an Interval1)
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Abstract

Consider the problem of estimating a p×1  mean vector θ (p≥4)  under 

the quadratic loss, based on a sample X 1 , X 2 ,  … , Xn
. We find a 

Lindley type decision rule which shrinks the usual one toward the mean 
of observations when the underlying distribution is that of a variance 

mixture of normals and when the norm ∥θ-θ1∥is restricted to a 

known interval, where θ= 1
p ∑

p

i=1
θ i  and 1  is the column vector of ones. 

In this case, we characterize a minimal complete class within the class of 
Lindley type decision rules. We also characterize the subclass of Lindley 
type decision rules that dominate the sample mean.

Keywords : Lindley type decision rule, Mean vector, Quadratic loss, 
Underlying distribution

1. Introcuction

The problem considered is that of estimating with quadratic loss function the 

mean vector of a compound multinormal distribution when the norm ∥θ-θ1∥is 

restricted known interval. The class of estimation rules considered will consist of 

Lindley type estimators only. Such a class was introduced by James-Stein(1961) 

and Lindley(1962) in order to prove that some of its members dominate the 
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sample mean in the multinormal case. Strawderman(1974) also derived a similar 

result for the more general case considered in this paper of a compound 

multinormal distribution.

The problem of estimation of a mean under constraint has an old origin and 

recently focussed again in the context of curved model in the works of 

Amari(1982), Kariya(1989), Perron and Giri(1989), Merchand and Giri(1993), and 

Baek(2000) among others. A study of compound multinormal distributions and the 

estimation of their location vectors was carried out by Berger(1975).

In section 2, we present the general setting of our problem and develop 

necessary notations. In section 3, we examine the estimation problem based on a 

Lindley type decision rule when the norm ∥θ-θ1∥  is restricted to a known 

interval. In this case, we give to the subclass of Lindley type estimators which 

dominate the sample mean when the norm is restricted to a known interval.

2. Notation and Preliminaries

Let x = (x1 ,… , xp )',  p≥4 , be an observation from a compound multinormal 

distribution with unknown location parameter θ (p×1)  and mixture parameter 

H(․), where H(․)  represents a known c.d.f defined on the interval (0, ∞). In 

other words, we assume that the random variable X  generating our observation 

x  admits the representation,

L(X |Z= z)=N p ( θ, zI p ),  
∀z > 0,                  (2.1)

Z  being the positive random variable with c.d.f. H(․).

Our problem concerns the estimation of the location parameter θ  with loss 

function

L(θ, δ( x ))= (δ ( x )-θ )'(δ ( x )-θ ),  

with θ∈Θ
λ 1
λ 2 = { θ∈R

p |∥θ-θ 1∥∈[λ 1 , λ 2 ], 0≤λ 1≤λ 2≤∞},

where θ =
1
p ∑

p

i=1
θ i, 1 = (1,…,1)'  and the decision rule δ, δ (․):R

p→Rp,  is 

of the form  

δ( x )=x 1 +(1- c

( x- x 1 )'( x- x 1 ) )( x-x 1 ),  c∈R.

Restated in terms of the family of probability density functions of X , the 
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distributional assumption give by expression (2.1) and the restriction on the 

location parameter θ  indicate that the p.d.f. of X  is

P θ ( x )=
⌠
⌡ ( 0, ∞)

(2πz) - p/2 exp ( ∥x-θ∥
2

2z )dH(z),          (2.2)

x∈Rpand θ∈Θ
λ 1
λ 2
. It will be also assumed that E(Z) <∞  which will guarantee 

the existence of the covariance matrix ∑= Cov(X )=E(Z)I p  and the mean 

vector E(X )=θ. The performance of the estimator δ  will be measured by its 

risk function

R( θ, δ)= E θ [L( θ, δ ( X ))]=E θ [ ( δ ( X )- θ )'( δ (X)- θ )],  θ∈Θ
λ 2
λ 1
 

Define

DLind={ δ:Rp→Rp∣δ c (X )=X 1+(1- c

(X-X 1 )'(X-X 1 )
(X-X 1 )),   

c∈R },
where the parameter space is of the form 

Θλλ =Θ λ= { θ∈R
p |∥θ-θ1∥= λ}, λ≥0 .

Then under the assumptions θ∈Θλ, p≥4  and E[Z] <∞ , we can show that

       R( θ , δ c )=E θ [ ( δ
c ( X )-θ)'( δ c ( X )- θ )]    

             = pE(Z)+ {⌠⌡ ( 0, ∞) [
c
z
-2c(p-3)]f p ( λ, z)dH(z) } ,    (2.3)

using the method by Baek(2000). By expression (2.3), the unique best estimator 

within the class DLind  is given by δ
c * ( λ)  where

c * ( λ)= (p-3)

⌠
⌡ ( 0, ∞)

f p (λ, z)dH(z)

⌠
⌡ ( 0, ∞)

f p ( λ, z)
dH(z)
z

                          (2.4)

and its risk is
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R( θ , δ c
*
( λ))= pE(Z)-(p-3) 2

[⌠⌡ ( 0, ∞)
f p ( λ, z)dH(z)]

2

⌠
⌡( 0, ∞)

f p ( λ, z)
dH(z)
z

,   θ∈Θλ .

When ∥ θ- θ 1∥= λ, the use of other estimators of the Lindley class other 

estimators of the Lindley class other that will incur risk which is a strictly 

increasing function of distance ∣c-c
*
( λ)∣ .  To see this, we can define t(λ)  

such that c= t(λ)c
*
(λ)  and, using expression (2.3), express R(θ, δ

c
)  as

pE(Z)+(p-3) 2 [ t 2 ( λ)-2t(λ) ]
[⌠⌡ ( 0, ∞)

f p ( λ, z)dH(z) ]
2

⌠
⌡( 0, ∞)

f p ( λ, z)
dH(z)
z

.               (2.5)

From this we can write

R(θ, δ
c
)-R(θ, δ

c * ( λ)
)=∣c-c

*
(λ)∣

2⌠
⌡ ( 0, ∞)

f p ( λ, z)
dH(z)
z

.      (2.6)

The natural estimator δ 0 (X )=X  is a member of the Lindley class and has a 

constant risk function equal to pE(Z) . Using the  expression (2.5), we can verify 

that the Lindley type estimator δ c  dominates the natural estimator δ 0  if and 

only if 0 < c < 2 < c
*
( λ)  for θ∈Θλ.

3. Estimation when the Norm is Restricted to an Interval

In this section, we study the case where the mean θ  is restricted to a known 

interval [ λ 1 , λ 2 ]  case, no optimal Lindley type decision rule will exist whenever 

λ 1≤λ 2(but see the discussion following Corollary 3.7 for asymptotic 

considerations). We can also characterize the subclass of Lindley type decision 

rules that dominate the natural estimator δ 0 = X  when θ∈Θ
λ 1
λ 2
. In the 

following, we will denote

c * [ λ 1, λ 2 ] =  inf   c
* (λ)  and c

*
[ λ 1 , λ 2 ]=  sup  c

* ( λ).

                      λ∈[λ 1, λ 2 ]                     λ∈[λ 1, λ 2 ]    

Theorem 3.1 Let x  be a single observation from a p-dimensional location 

parameter with p.d.f. of the form given by expression (2.1). Under the assumptions 
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θ∈Θ
λ2
λ 1, 0≤λ 1≤λ 2≤∞;  p≥4  and E(Z) <∞ ,

(a) the subclass { δ
c∈DLind∣ c

* [ λ 1, λ 2 ]≤ c≤{ c
* [ λ 1, λ 2 ]}  is a minimal 

complete class within the class DLind , and

(b) the decision rule δ c  will be dominate the natural estimator δ 0  if 

0 < c < 2 c
*
[ λ 1 , λ 2 ] .

Proof. (a) Let c 0  be a real number such that 

c 0∉[ c
* [ λ 1, λ 2], c[ λ 1, λ 2]] . Then, using expression (2.6), if 

c 0 < c
* [ λ 1, λ 2 ] , we may write the difference in risks

R( θ, δ
c 0 )-R( θ, δ c * [ λ 1, λ 2 ] )

= [R( θ, δ
c 0 )-R(θ, δ c

*
(∥ θ- θ1∥))]-[R(θ, δ c

* [ λ 1, λ 2 ] )-R(θ, δ c
*
(∥θ- θ1∥))]

 =
⌠
⌡ ( 0, ∞)

f p (λ, z)
dH(z)
z {∣c 0 -c

* (∥ θ -θ1∥ )∣2

-∣ c * [λ 1, λ 2]-c
* (∥ θ -θ1∥)∣2

};

this last expression being positive for all θ∈Θ
λ2
λ 1
 given that c 0 < c

* [ λ 1, λ 2 ] . In 

the same manner, the decision rule δ c  with c = c * [ λ 1, λ 2 ]  will dominate the 

decision rule δ
c 0  if c 0 > c

*
[ λ 1, λ 2 ] . Also if 

c 0∈ [ c
* [ λ 1, λ 2 ], c

* [ λ 1, λ 2 ] ] , the intermediate value theorem ( c
* ( λ)  is 

easily shown to be continuous) assures us that

R( θ , δ
c
)-R(θ , δ

c 0
) > 0,  ∀c≠c 0,

when c * (∥ θ-θ 1∥)= c o. These last results guarantee that all the rules δ
c  

with c∉[ c * [ λ 1, λ 2 ], c
* [ λ 1, λ 2 ] ]  are inadmissible within the class DLind  

and the rules δ c  with c  belonging to the interval 

[ c
*
[ λ 1, λ 2 ], c

*
[ λ 1, λ 2 ] ]  cannot be improved upon by another rule of the 

class DLind  Thus, the result of part (a) follows.

(b) Similar to last part in Section 2, the decision rule δ c  will dominate the 

decision rule δ 0  if

R( θ, δ c ) <R(θ, δ 0),  ∀θ∈Θ
λ 2
λ 1

                      ⇔ 0 < c < 2c * (∥ θ - θ 1∥),  ∀∥θ - θ 1∥∈[λ 1 , λ 2 ]

                      ⇔ 0 < c < 2 c
*
[λ 1 , λ 2 ] .
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It may also be remarked that the rule δ c  with c= 2 c * [ λ 1 ,λ 2 ]  will also 

dominate δ 0  under the conditions of the theorem when λ 1 < λ 2  and that all the 

decisions rules δ c  with c > 2c * [ λ 1 ,λ 2 ]  do not dominate δ
0  under the 

conditions of the theorem. The results above would be more explicit if the 

function c * [ λ 1 ,λ 2 ]= c
* ( λ 1 )  and c

* [ λ 1 , λ 2 ]= c
* ( λ 2 ) .

The case with no restrictions on the norm ∥θ-θ 1∥( i. e., λ 1 = 0  and 

λ 2 =∞) can be expanded using by Strawderman's result(1974) and it can be 

showed that the decision rules δ c  with 0≤c≤2(p-3)E-1 (Z-1 )  are minimax 

rules by showing that their risk functions are uniformly less than or equal to the 

risk function (= pE(Z))  of the minimax decision rule δ
c. This result is derived 

below as a particular case of Theorem 3.1. To do so, we need to determine the 

quantity c * [ 0, ∞] . The following three Lemmas will prove useful in determining 

c * [ 0, ∞]  and, also, c * [ λ 1 , λ 2 ] .

Lemma 3.2. Let X  be an arbitrary random variable and let f  and g  be two 

real nondecreasing functions on the support of X . Then, if the quantities 

E[ f(X)]  and E[g(X)]  exist, Cov( f(X), g(X))≥0  with the inequality being 

strict if f  and g  are strictly increasing and X   is nondegenerate.

Proof. A neat proof of Lemma 3.2. is given by Chow and Wang(1990).

Lemma 3.3. Let L  be a Poisson random variable with mean γ, γ > 0,  and 

f
*
p ( γ)=E

L
[ (p+2L-3)

-1
] ; p≥4 ;  then

(i) f
*
p ( γ)= e

-γ ⌠
⌡ [ 0, 1]

t
p-4
e
γt 2

dt,  and

(ii) f
*
p+2 (γ)= (2γ)

-1
[1-(p-3)f

*
p ( γ)].                               (3.1)

Proof. We can prove this lemma using the method by Egerton and 

Laycock(1982).

Lemma 3.4. Let f*p (․), p≥4 , be a function defined on [ 0, ∞]  and equal to

f*p ( γ)=E
L [ (p+2L-3)-1 ],  γ≥0 , 

where L  is a Poisson random variable with mean γ . Then,

(i) f
*
p (․)  is a strictly decreasing function,
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(ii) lim
γ→0+
f*p ( γ)= (p-3)

-1 , lim
γ→0+
f*p ( γ)= 0 ,

(iii) if p≥5, γf*p ( γ)  is strictly increasing function for γ≥0 .

Proof. (i) Using part (i) of Lemma 3.3, we have for γ 2 > γ 1 > 0 ,

f *p ( γ 2 )- f
*
p ( γ 1 )=

⌠
⌡ [ 0, 1]

t p-4 (e
γ 2 (t

2 -1)
-e

γ 1 (t
2 -1)
)dt < 0 .

(ii) By the dominated convergence theorem, 

lim
γ→0+
f*p ( γ)= lim

γ→0+

⌠
⌡ [ 0, 1]

t p-4e γ ( t
2 -1)dt

          =⌠⌡ [ 0, 1]
t
p-4

lim
γ→0

+
(e

γ( t 2 -1 )
)dt

          =⌠⌡ [ 0, 1]
t p-4 dt= (p-3)-1 ,

and

lim
γ→∞
f
*
p ( γ)= lim

γ→∞

⌠
⌡[ 0, 1]

t
p-4
e
γ ( t 2 -1)

dt

        =⌠⌡ [ 0, 1]
t p-4 ( lim

γ→∞
e γ( t

2 -1 ) )dt= 0.

(iii) Using Lemma 3.3, we have 

γf*5 ( γ)=
1
2
(1-e-γ ),

which is easily seen to be strictly increasing. For p≥6  we obtain by the 

recurrence formula given by expression (3.1),

γf*p ( γ)=
1
2 (1-(p-5)f

*
p-3 (γ) ),  γ > 0,  

which must be strictly increasing given that function f*p-3 (․)  is strictly 

decreasing by part (i).

In the following, we will set E-1 [Z-1 ]  equal to zero if the expectation 

E[Z
-1
]=∞.

Theorem 3.5. The function c * (․)  defined by expression (2.4) satisfies the 

following properties :

(a) inf c * ( λ)= (p-3)E[Z-1 ],
   λ≥0

(b) c
*
( λ)= k ⇒ Z  is constant with probability one

 and,
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(c) for p≥5,  sup c
* (λ)= (p-3)E(Z)

             λ≥0
Proof. (a) Expression (2.4) can be rewritten as

c
*
( λ)= (p-3)

E
Z
[ f p ( λ, Z)]

EZ [Z-1 f p ( λ, Z)]
,  λ≥0 .

By applying Lemma 3.2 to the functions f p ( λ, Z)  and Z
-1 , the function 

f p(λ, z)  being an increasing function by part (i) of Lemma 3.4, we have for 

λ≥0,
     

Cov( f p(λ, Z), -Z
-1 )≥0

⇒ EZ [Z-1 f p ( λ, Z)]≥ E[Z
-1 ]EZ [ f p ( λ, Z)]

                 ⇒ c
*
( λ)≥(p-3)E

-1
[Z

-1
]

⇒ inf c
* ( λ)≥(p-3)E-1 [Z-1 ]

  λ≥0

The reverse inequality is obtained by observing that c * ( 0)= (p-3)E-1 [Z-1 ].

(b) The constancy of c * ( λ)  implies c * (λ)= k= c * ( 0)= (p-3)E-1 (Z-1 )  

∀ λ> 0,  and

⌠
⌡ ( 0, ∞)

(p-2-
k
z
)f p(λ, z)dH(z)= 0 .

Since both f p ( λ, z)  and -kz
-1  are strictly increasing function of z , we have 

by Lemma 3.2, for nondegenerate Z,  

     Cov( f p ( λ, Z),  p-3-kZ
-1 ) > 0

⇒ E[ (p-3-kZ-1 )f p ( λ, Z)] >E[ (p-3-kZ
-1 )]E[ f p ( λ, Z)]= 0,

which results in a contradiction implying Z is constant with probability one.

(c) By applying Lemma 3.2 to the functions -z-1 f p ( λ, z)  and z, the function 

-z
-1
f p ( λ, z)  being an increasing function by virtue of part (iii) of Lemma 3.4, 

we have for p≥5  and λ≥0 , 

Cov(-Z-1f p ( λ, Z), Z)≥0

                           ⇒ E
Z
[ f p ( λ, Z)( ]≤E[Z

-1
f p ( λ, Z)]E[Z]

                           ⇒ c * (λ)≤(p-3)E[Z]

         ⇒ sup c
* (λ)≤(p-3)E[Z].

                             λ≥0
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The reverse inequality is obtained by verifying that lim
λ→∞
c * ( λ)= (p-3)E[Z]  

whenever p≥5 . To do so, it will be useful to express the function c
* (․)  in the 

following way,

c * ( λ)= (p-3)

⌠
⌡ ( 0,∞)

∑
∞

j=0

e
-
λ
2

2z ( λ
2

2z )
j+ 1

j!(p+2y-3)
zdH(z)

⌠
⌡ ( 0,∞)

∑
∞

j= 0

e
-
λ2

2z ( λ
2

2z )
j+ 1

j!(p+2y-3)
dH(z)

,  λ> 0

     = (p-3)

⌠
⌡ ( 0,∞)

∑
∞

j= 1

e
-
λ2

2z ( λ
2

2z )
j

j!
2j

(p+2y-5)
zdH(z)

⌠
⌡ ( 0,∞)

∑
∞

j= 1

e
-
λ2

2z ( λ
2

2z )
j

j!
2j

(p+2y-5)
dH(z)

,  λ> 0

Moreover, we can write

lim
λ→∞
c * ( λ)= (p-3)

lim
λ→∞{⌠⌡ ( 0,∞)

∑
∞

j=1

e
-
λ
2

2z ( λ
2

2z )
j

j!
2j

(p+2y-5)
zdH(z)}

lim
λ→∞{⌠⌡ ( 0,∞)

∑
∞

j=1

e
-
λ2

2z ( λ
2

2z )
j

j!
2j

(p+2y-5)
dH(z)}

if both limits exist and the denominator is not equal to zero. By the dominated 

converge theorem, we can then write lim
λ→∞
c * ( λ)  as

(p-3)

⌠
⌡ ( 0, ∞)

lim
λ→∞
E
Lz[

2Lz
p+2Lz-5

1 ( 1, 2, ...) (Lz )]zdH(z)
⌠
⌡ ( 0, ∞)

lim
λ→∞
E
Lz[

2Lz
p+2Lz-5

1 ( 1, 2, ...) (Lz )]dH(z)
,

where, for z> 0, L z
 is a Poisson random variable with mean λ

2
/2z . Finally by 

noting that,

∀z > 0,  lim
λ→∞
E
Lz[

2L z
p+2L z-5

1 ( 1, 2, .... )(L z )]= 1,
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because the integrand tends 2Lz (p+2Lz -5)
-1  tends to one when Lz→∞ , we 

obtain

lim
λ→∞
c * (λ)= (p-3)

⌠
⌡ ( 0,∞)

zdH(z)

⌠
⌡ ( 0,∞)

dH(z)
= (p-3)E(Z).

Having evaluated the quantities c * [ 0, ∞]  and c * [ 0, ∞] , and Theorem 3.1 

yields the following result.

Corollary 3.6. Let x  be a single observation from a p-dimensional location 

parameter family with p.d.f. of the form given by expression (2.1). with p≥4,  

and under the assumption θ∈R
p  and E[Z] <∞ , 

(a) the subclass { δ c∈DLind∣(p-3)E-1 [Z-1 ]≤c≤(p-3)E[Z] }  is a minimal 
complete class DLind  for p≥5,

(b) the decision rule δ c  will dominate the decision rule δ 0  if 

0 < c < 2(p-3)E-1 [Z-1 ].
Proof. These results above are a direct application of Theorem 3.1 and 3.5.

We pursue with some remarks.

Remark 3.1. Under the conditions of Corollary 3.6, the decision rule δ c  is a 

minimax rule if and only if 0≤c≤2(p-3)E-1 [Z-1 ] . This condition can also be 

obtained using part(a) of Theorem 3.5 and similar to last part in Section 2 which, 

under the same conditions, would specify that

R(θ, δ c )≤p ⇔ 0≤c≤2c * (∥ θ-θ 1∥).

It is interesting to note that the natural estimator δ 0  represents the only 

minimax rule within the class DLind  when the quantity E[Z
-1 ]  does not exist.

Remark 3.2. The results above of Theorem 3.1 and Corollary 3.6 can be 

extended to the case where the experimental information consist of a sample 

X 1 , ... Xn
 with p.d.f. of the form in(2.1) and the class of decision rules 

considered consists of the decision rules of the form

δ c ( X 1 , ... , X n )=X 1+(1-
c

( X- X 1 )'( X- X 1 ) )( X- X 1 ),  c∈R,
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where X  is the sample mean and X= (np)
-1
∑
p

i=1
∑
n

j=1
Xij=P

-1
∑
n

i=1
X i.  This 

can be seen by nothing that the probability law of sample mean 

X = n-1 ∑
n

i=1
Xi ; X 1, ..., Xn

 being n  independently and identically distributed 

random vectors admitting the representations.

L(X j∣Z j= z j )=Np ( θ, z jI p ),  j=1, …, n,

for all values z 1, ..., z n  of n  independent copies Z 1, ..., Z n  of a positive 

random variable Z  ; admits the representation 

L(Z∣Z 1 = z 1 , …, Zn= z n ) =Np ( θ , n
-2
∑
n

j=1
z jI p ),

or 

L(X∣W= w)=Np ( θ , wI p ),  ∀w > 0,

where W is a random variable such that

L(W)=L(n
-2
∑
n

j=1
Z j ).                           (3.2)

Thus the optimal estimator of the Lindley type is; with the conditions 

θ∈Θλ,  E[Z] <∞,  p≥4 ;  given by expression (2.4), and is equal to 

δ
c
*
n (λ) = X 1 +(1-

c*n (λ)

( X- X 1 )'(X- X 1 ) )( X- X 1 )
where

c
*
n ( λ)= (p-3)

⌠
⌡ ( 0, ∞)

f p (λ, w)dH
*
n (w)

⌠
⌡ ( 0, ∞)

f p (λ, w)
dH*n (w)

w

,

H*n (․)  representing the c.d.f. of the random variable W  defined by expression 

(3.2). Furthermore, the result specifying a minimal complete class within the class

DLind={ δ c:Rp→Rp∣δ c ( X )=X 1 +(1-
c

( X- X 1 )'(X- X 1 ) )( X- X 1 )}
as well as the result giving a subclass of Lindley type rues that dominate the 

sample mean δ 0 ( X )=X  and be applied to the case where the experimental 
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information consists of a sample. In particular, by rewriting Corollary 3.6, we 

obtain the following result. Part(b) of this corollary has been proved by Bravo and 

MacGibbon(1988) under a more general setting.

Corollary 3.7. Let X 1 , ... Xn
 be a sample generated by a common random 

vector X  which admits the representation given by expression (2.1). Under the 

conditions  θ∈R
p
,  p≥4  and E[Z] <∞

(a) for p≥5 , the subclass

{ δ c
∈DLind∣n

-2
(p-3)E

-1 [ ( ∑
n

i=1
Z i)

-1

≤c≤n
-1
(p-3)E[Z] ]}  is a minimal 

complete class with the class DLind , and

(b) the decision rule δ c  will dominate the sample mean if 

0 < c < 2n-2 (p-3)E-1 [ ( ∑
n

i= 1
Z i )

-1

].                  (3.3)

Proof. These results are a direct application of Corollary 5.6 and the discussion 

above expression (3.2).

However, the results concerning the minimax criteria given by Strawerman 

cannot be applied to the decision rules δ c ( x )  since the statistic X  does not 

represent in general a sufficient statistic(the multinormal case being a well known 

exception). Finally it is interesting to note that,

E-1 [ ( ∑
n

i= 1
Z i )

-1

]≤E [ ∑
n

i= 1
Z i ]= nE[Z],

(the above inequality can be seen us a consequence of Lemma 3.2), implying that 

the interval

( 0, 2n-1 (p-3)E-1 [ ( ∑
n

i= 1
Z i )

-1

])→ ∅  as 
n→∞,

which, by expression (3.3), indicates that the subclass of Lindley type decision 

rules dominating the sample mean can be made arbitrarily small by increasing the 

sample size n .
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