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Bootstrapping Regression Residuals
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Abstract

The sample reuse bootstrap technique has been successful to attract
both applied and theoretical statisticians since its origination. In recent
years a good deal of attention has been focused on the applications of
bootstrap methods in regression analysis. It is easier but more accurate
computation methods heavily depend on high-speed computers and
warrant tough mathematical justification for their wvalidity. It is now
evident that the presence of multiple unusual observations could make a
great deal of damage to the inferential procedure. We suspect that
bootstrap methods may not be free from this problem. We at first present
few examples in favour of our suspicion and propose a new method
diagnostic—-before-bootstrap method for regression purpose. The usefulness
of our newly proposed method is investigated through few well-known
examples and a Monte Carlo simulation under a variety of error and
leverage structures.

Keywords . Diagnostics, Diagnostic-before-bootstrap, Fixed-X
resampling, High leverage points, Jackknife-after-bootstrap, Monte Carlo
simulation, Outliers, Random-X resampling

1. Introduction

Bootstrap technique proposed by Efron (1979) is such a procedure which creates
a huge number of sub-samples from a pre-observed data set by a simple random
sampling with replacement. These sub-samples could be later used to investigate
the nature of the population without having any assumption about them. In recent
years the application of bootstrap methods has become widespread (see Fox 1991,
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Efron and Tibshirani 1993, Shao and Tu 1995, Davison and Hinkley 1997, Venables
and Ripley 2000). This computer-based technique is used mainly for estimating
standard error, bias, confidence interval and other statistical measures. In this
paper we consider its application in regression analysis. For linear regression with
normal random errors, the ordinary least squares (OLS) theory of regression
estimation and inference are traditionally used mainly because of tradition and ease
of computation. It is now evident (see Ryan 1997) that the OLS theory suffers a
huge set back in the presence of unusual observations such as outliers. But in a
real data the presence of 1-10% outliers are rather rule than exception (see
Hampel et al. 1986). In linear regression, non—normality of errors often occurs in
the presence of outliers in the data. We anticipate, however, that the bootstrap
methods have the potential to provide more accurate analysis in a similar
situation.

Bootstrap may be a very useful technique indeed but caution must be taken
while considering this technique. To quote Efron (1992), ‘it (Bootstrap)
automatically produces accuracy estimates in almost any situation, including very
complicated ones, without requiring much thought from the statistician. This is a
considerable virtue, but a virtue that can be abused. The danger lies in the
possibility that the bootstrap estimates of accuracy, so easily produced, might be
accepted uncritically. This reinforces the truism the bootstrap data, like real
data, deserve a thorough examination.” In general, diagnostic methods are
designed to find problems with assumptions in an analysis and these methods are
being used extensively in all branches of regression analysis. But it is surprising
that diagnostics in bootstrapping is not a much focused issue. However, Efron
(1992) led the way when he introduced jackknife-after bootstrap and infinitesimal
jackknife for estimating standard error and jackknife influence function for
assessing the role of a single observation in the estimation of standard error for
bootstrapping. The approaches he advocated can easily come under the broad
heading diagnostics. A good number of bootstrap techniques are now available in
the literature for estimating regression parameters (see Freedman 1981, Wu 1986,
Ryan 1997). Imon and Das (2005) point out that neither of these techniques is
entirely satisfactory when multiple outliers are present in the data. In Section 2
we introduce different commonly used bootstrap techniques suitable for regression
analysis. We propose a new method diagnostic-before-bootstrap in Section 3 to
handle situations when a group of outliers are present in the data. We apply this
newly proposed technique to several well-known data sets to investigate its
performance in Section 4. The usefulness of this technique is investigated and its
performance is compared with different bootstrap techniques in Section 5 under a
variety of situations.
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2. Bootstrapping Regression Models and Residuals

Regression analysis is a statistical technique for investigating and modeling the
relationship between variables. Application of regression is numerous and occurs in
almost every branch of knowledge. In our study we are concerned with linear
regression model

Y=X3+e @D
where Y = (y17 Yos oot )yn)T’ X= (xl; Ty, =rr ;xn)T’ xiT: (xi,b Ty == 5 % ), and
€= (€, €, -~ ,6,)T. In this equation gis a  kx] vector of unknown

parameters to be estimated from the data, Y is an #x] vVector, X is an yxk
data matrix of full rank fkxy and € is an gx] vector of unobservable random
errors with E(e) =0 and V(e) = o?l. For linear regression with normal random

errors, the OLS theory of regression estimation and inference provides very
satisfactory results. The least squares estimate of 3 is given by the formula

ol

o= (X Tx )*1X TY. Here we introduce few methods of bootstrapping regression
models.

2. 1 Fixed-X resampling

The most popular way of bootstrapping in linear regression is to treat the fitted
values from the model as giving the expectation of the response for the bootstrap
samples. We could estimate a set of residuals by the OLS method and then can
generate bootstrap residuals by random sub-sampling from that set. In other
words, a distribution of bootstrap residuals can be obtained by bootstrapping OLS

residuals. Attaching a random error to each ?}i produces a fixed-X bootstrap
samples, y: = {y;} The errors could be generated parametrically from a normal

distribution with mean 0 and variance , if we are willing to assume that the
errors are normally distributed or non-parametrically, by resampling residuals from
the original regression. We would then regress the bootstrapped values y: on the
fixed X matrix to obtain bootstrap replications of regression coefficients. For a
simulated set of errors (e, €, - ,€,), let &l=(&}y, ey, -, e}, be the rth
bootstrap errors, where r = 1, 2,..., B, and B is the no. of bootstrap replications.
Then the bootstrap responses 4, = {y,;) are generated by

V= szZ?* + &y (2.2)
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which is called model based resampling of linear regression model. This method
also have some other names such as fixed X-resampling, bootstrapping the
residuals of linear regression model or bootstrap 1 method of linear regression
model. To obtain the bootstrap least squares (BLS) estimate we compute

Br=(XTX)"'xTy* r=12.B (2.3)

Thus the bootstrap 1 estimate of g 1is given by

~ B ~
B(bootl): J’? 2 Br : (24)

=1

2.2 Random-X resampling

In random-X resampling or bootstrap 2 method, we follow a completely different
approach. Assume that we want to fit a regression model with response variable

Y and predictors X, X,,---,X,. We have the pairs of observations
(VisXa, X, xyp) » L= 1,2, n. We simply select B samples of pairs, fit the

model and save the coefficients of each bootstrap sample. The resampling
simulation  therefore involves  sampling pairs with replacement from

(xy,v7),,(x,,y,) - This is equivalent to taking {x’;m y’;m}z{x’;n,y’;n} ,
where x’:ﬂ:{x’:m} , y;i={y’;li} sy 1= 12..., m» m = 12,.. B. Let {xfn,y‘:%}
be independent, with uniformly distributed. Thus the ’Btﬂ be the least squares

estimate based on the resample

Bu={Zxx) S, (2.5)

which 1s called bootstrapping pairs or case resampling or bootstrap 2 methods of
linear regression estimate. Hence the bootstrap 2 estimate of A is given by

~ B .
B (Bool2) — Jg mzl Bm . (26)
2.3 Jackknife

The generalized versions of well-known jackknife technique have also been
proposed for estimating the distribution of estimate, as alternatives to the
bootstrap. The jackknife predates the bootstrap and similarities to it. Here we
would like to extend this idea to estimate regression coefficients and to estimate

true errors. Let AB be the usual OLS estimator of regression coefficients A
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and 23 (=9 pe the corresponding estimate with i-th case deleted. Then the
jackknife estimate of regression coefficients g is by definition

S ack) _ 5 =1 <hpH(—i) =
J =np ;:: B , =1, 2, -, n (2.7
2.4 Jackknife-after—-bootstrap

Efron (1992) first considered the need of diagnostics in bootstrapping. He
introduced the jackknife-after-bootstrap method to investigate the effect of a
single observation in bootstrap. Let we have drawn B bootstrap samples and we
want to estimate regression coefficients or residuals using the model (2.2). The

jackknife—after—-bootstrap method provides a way of estimating ABB using only
paired bootstrap (Bootstrap 2) samples. Suppose we had a large computer and set

out to calculate the jackknife estimate of ,ABB . For i = 1,2,..., n, we should leave

out data point i to recompute 73 p and call the result ,73 BGi) - Then the

jackknife-after—-bootstrap (Jack-Boot) residuals are defined as
%B(i) =Y _-TiT/;B(i)y i =12.,n (2.8)

The main difficultly with this procedure is to compute ’[9 BGi) > which requires

a completely new set of bootstrap samples for each i. Fortunately for each data
point {, there are some bootstrap (Bootstrap 2) samples in which the data, does

not appear, and we can use those samples to estimate A[;’ BGi) - In particular we
estimate B 5y Dy the sample standard deviation S(X*t,y*% , b =1,2 .., B,

over the pairs of sample (X*b, y* b) , that does not contain point i. Formally, if
we let C, denoted the indices of the bootstrap samples that does not contain

point i and there are B, such samples, then

Brin= b;c[S(X*b,y*b)/Bi (2.9)

Finally we have to consider how large should we take the number of bootstrap
replications for regression analysis. There is no general agreement among the
statisticians (see Efron 1987, Hall 1992, Efron and Tibshirani 1993, Booth and
Sarker 1998) about the number of replications needed in bootstrap. Bootstrap
replications may depend on the value of X and the complexity of the function we
are dealing with. Even a small number of bootstrap replications, say B = 25, is
usually informative. For estimating a standard error, the number B will ordinarily
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be in the range 25-250. But much bigger values of B (say 500-10000) are required
for  bootstrap  confidence interval, regression analysis, cross—validation,
randomization tests and permutation tests.

3. Diagnostics Before Bootstrap

In the previous section we introduce different bootstrap techniques for the
estimation of regression errors. But we know that the classical inference procedure
may often go in the wrong direction in the presence of unusual observations in
the data set. We know that the traditional estimators, which form the basis of
analysis could be extremely sensitive to outliers and to a greater extent when
outliers are also the points of high leverages. Outliers are extreme observations
that for one reason or another do not belong with the other observations in the
data. In the framework of linear regression, we define an outlier to be an
observation for which the fitted residual is large in magnitude compared to the
other observations in the data set, that is, observations are judged as outliers on
the basis of how unsuccessfully the fitted regression equation is in accommodating
them and that is why observations corresponding to excessively large residuals
are termed as outliers. High Leverage Points 'are those observations for which the
input vector x, s, in some sense, far from the rest of data’ (Hocking and

Pendleton 1983). Observations that are isolated in the X space will have high
leverages. If the OLS regression estimators are routinely applied to data, which
contain a few wild observations, then the obtained estimates can be seriously
misleading. It is therefore critically important to investigate the data for the
presence of outliers and high leverage points whenever the OLS regression
procedures are used. We also suspect that not all bootstrap techniques are equally
efficient to handle this problem.

In this paper, we propose a new way of bootstrapping in linear regression
where suspect outliers are identified and omitted from the analysis before
performing bootstrap with the remaining set of observations. The bootstrap
estimates of parameters will involve only good observations and for this reason
they will not be affected by outliers. We could, however, fit the model for the
entire data set and residuals for all observations could be estimated. We shall call
this technique as diagnostic-before-bootstrap (Diag-Boot). An excellent review of
identification of multiple outliers is available in Barnett and Lewis (1994), Ryan
(1997), and Sengupta and Jammalmadaka (2003). For the identification of suspect
outliers we would use the robust reweighted least squares (RLS) residuals
proposed by Rousseeuw and Leroy (1987). To compute the RLS residuals, a
regression line is fitted without the observations identified as outliers by the least
median of squares (LMS) technique proposed by Rousseeuw (1984). The entire set
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of RLS residuals can be computed using the program PROGRESS developed by
Rousseeuw and Leroy (1987) and that is also available in MINITAB and S-PLUS.

Let us denote a set of cases remaining in the analysis by K and a set of cases
deleted by D. Let us also suppose that R contains (n-d) cases after d<(n-k)
cases in D are deleted. Without loss of generality, assume that these observations
are the last of d rows of X and Y so that they can be partitioned as

Then the vector of estimated parameters after the deletion of d observations,
denoted by B | is obtained as

B = (XpXD ' XiYy 3.1)
Thus an yx] vector of deletion residuals can be defined as
D=y g 5D (3.2)
From this the j-th deletion residual is defined by
=Y, —g 50 j=12.n (3.3)

As Imon and Das (2005) point out that bootstrap 1 method performs best overall
among all existing bootstrap techniques, we would like to consider it after the
omission of suspect outliers. Let the deletion bootstrap responses

*

ViD= {y* (" P} are generated by
S A B 34
For each replication we compute
B PD=(xTx,) XY, , r=12..B (35)
Thus the diagnostic-before-bootstrap estimate of 3 is given by
~ B
5*<*D>:% 2B (36)

Then the Y's are fitted on the X's and the diag-boot residuals are computed by
the equation
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=D =y 5D (3.7)

4. Examples

We now consider several well-known data sets that are frequently used in the
study of the identification of outliers. We would like to compare the performance
of our newly proposed diag-boot method with all other bootstrap methods together
with the traditional OLS method. For both real life data and simulated data, we
have used robust reweighted least squares (RLS) residuals proposed by
Rousseeuw and Leroy (1987) for the identification of outliers before bootstrapping.

4.1 Hawkins-Bradu-Kass (1984) data

Hawkins, Bradu and Kass (1984) constructed an artificial three-predictor data
set containing 75 observations with 10 outliers. Most of the traditional methods
fail to focus on outliers and they produce a poor set of results. Although this is
an artificial data we do not know what were the exact values of the true errors.
All we know that the true errors corresponding to true errors were set nearly at
10. It has been reported by many authors (see Rousseeuw and Leroy 1987) and
we observe from Table 1 that the robust RLS can produce a set of results,
perhaps very close to the true ones. That is why we clearly identify all 10
outliers and we observe that their values are also very close to 10 each. But the
unfortunate consequence of using OLS method is clearly visible here. All the 10
outliers get masked here, but three good observations (cases 11-13) are swamped
in as outliers.

We now apply our newly proposed method for this data. It is worth mentioning
that to compute results for bootstrap 1, bootstrap 2, jackknife—after—bootstrap and
diagnostic-before—bootstrap we used three types of replications, i.e. B = 500, 1000
and 5000. All of these computations are done using S-PLUS 2000. We observe a
little change in the results for different number of replications. For brevity we
only present results of different bootstrap residuals based on 5000 replications and
these results together with the OLS and jackknife residuals are presented in Table
1.



Bootstrapping Regression Residuals 673
Table 1. Bootstrap residuals for Hawkins et al. (1984) data
OLS Jack Bootl Boot2 |Jack-Boot |Diag-Boot RLS
1 3.38039 3.39690 8.42045 3.22236 3.22011 9.7572 9.7386
2 3.99499 4.00813 8.81420 3.75519 3.75367 10.1601 10.1825
3 3.00259 3.01634 9.00975 2.94191 2.93874 10.3554 10.4053
4 2.56051 2.57028 8.20288 2.37546 2.37338 9.5595 9.6547
5 3.06102 3.07404 8.70995 2.89979 2.89744 10.0578 10.1071
6 3.43559 3.45553 8.72679 3.26571 3.26331 10.0558 9.9962
7 4.51295 4.53246 9.52722 4.27659 4.27475 10.8574 10.7955
8 3.83655 3.85042 9.01400 3.69731 3.69497 10.3577 10.3807
9 2.70905 271784 8.30094 2.56314 2.56086 9.6592 9.7668
10 3.03851 3.04468 8.59530 2.94538 2.94287 9.9593 10.1030
11 | -7.83125 | -7.81875 | -1.49433 | -8.06546 | -8.06761 -0.1415 -0.0641
12 | -9.37166 | -9.36102 | -1.70492 | -9.36711 | -9.37127 -0.3465 -0.2022
13 | -6.11800 | -6.09218 | -0.56126 | -6.57383 | -6.57470 0.7582 0.6231
14 | -3.80242 | -3.76506 | -1.12151 | -5.11042 | -5.10505 0.1721 -0.2147
15 | -0.66050 | -0.64647 | -1.65679 | -0.68080 | —0.68140 -0.3372 -0.5034
16 0.86708 0.88290 | —0.65040 0.81597 0.81571 0.6633 0.4559
17 0.64616 0.64218 | -1.49082 0.54558 0.54659 -0.1277 -0.0730
18 | -0.39398 | -0.38918 | -1.27765 | -0.32397 | -0.32487 0.0646 0.0328
19 0.65305 0.65277 | —1.18408 0.51850 0.51947 0.1712 0.1823
20 0.34019 0.35322 | -0.85797 0.26366 0.26353 0.4644 0.3062
21 0.67333 0.68155 | -0.36935 0.68709 0.68649 0.9644 0.8793
22 0.93408 0.93119 | —0.98938 0.77058 0.77186 0.3728 0.4184
23 | -0.42803 | -0.42008 | -2.06704 | -0.50127 | -0.50106 -0.7332 -0.8327
24 1.35440 1.35897 | -0.57305 1.24193 1.24263 0.7691 0.7087
25 | -0.30497 | -0.30699 | -1.59075 | -0.19760 | -0.19834 -0.2330 -0.1803
71 0.01603 0.02135 0.00596 0.00596 0.00564 0.2660 0.2205
72 0.13812 0.13494 0.08367 0.08367 0.08414 -0.1294 -0.0707
73 0.44118 0.43352 0.44301 0.44301 0.44316 0.4710 0.6019
74 | -0.38979 | -0.39645 | -0.48004 | —0.48004 | —0.47914 -0.8272 -0.7247
75 | -0.34707 | -0.35873 | -0.19182 | -0.19182 | -0.19275 0.2692 0.4744
RSD 13.943 13.89 2.826 14.663 14.678 0.018




674 A.HM. Rahmatullah Imon - M. Masoom Ali

We observe from this table that all 10 outliers are clearly identified by the
newly proposed diagnostic—before-bootstrap method. These residuals are also very
close to the RLS residuals. We also observe from this table that like the OLS
residuals, bootstrap 2, jackknife and jackknife-after—bootstrap methods fail to focus
on any of the genuine outliers but swamp in few good observations. As it is
expected, bootstrap 1 method performs better than other bootstrap methods, but
diag-boot residuals perform better than bootstrap 1.

LS Jack
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" m 4 m
2 2
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-4 . -4 .
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Figure 1. Residual plots against errors of different bootstrap techniques for
Hawkins-Bradu-Kass (1984) data.
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To measures which technique does best in estimating the true errors analytically
we generally use the ratio of squared distances (RSD) proposed by Imon (2003).

. * % * .
For any set of residuals €;,€y,---, €, , we define RSD as

n
RSD(x) = Y (e; — €)% /ko® (4.1)

i=1
where we know the true errors. We would expect the RSD quantities to be close
to 1 when the OLS residuals are used in it. As we do not know the exact € here,

we would use RLS residuals as their substitutes. We observe from the RSD
values of different residuals that the performance of the OLS, jackknife, bootstrap
2 and jackknife-after—bootstrap methods are very poor as they yield very high
RSD wvalues. As it is expected, bootstrap 1 method performs better than other
bootstrap methods, but the performance of the diagnostic-before-bootstrap method
is quite outstanding. Its low RSD wvalue clearly indicates that this method is able
to estimate the entire set of residuals in a way that they become very close to
the true errors.

Now we present few graphical displays to show the performances of different
bootstrap techniques to estimate errors for Hawkins et al. (1984) data. In Figure 1,
we  have plotted the OLS, jackknife, bootstrap 1, bootstrap 2,
jackknife-after—-bootstrap and diagnostic-before-bootstrap residuals against the RLS
residuals assuming the latter ones as true errors. For a good set of residuals we
would expect a straight line from this scatter plot. We observe from this figure
that the OLS residuals break down completely for this data. Similar remark may
apply with the jackknife, bootstrap 2 and jackknife-after-bootstrap residuals. The
performance of bootstrap 1 residuals are good but diagnostic-before-bootstrap
residuals perform best over all and we observe almost a straight line when these
residuals are plotted against the true errors.2

4.2 Belgian Telephone Data

In the Belgian Statistical Survey, we found a data set (see Rousseeuw and
Leroy 1987) containing the total number (in tens of millions) of international phone
calls made between the years 1950 and 1973. This time series data contains heavy
contamination from 1964 to 1969. Upon inquiring, it turned out that during that
period another recording system was used giving the total number of minutes of
these calls. It has been reported by many authors that most of the commonly
used diagnostic methods fail to identify 3 outliers (1964-1966) out of 7, but
swamps in 3 good observations (1971-73) and thus produce a poor set of residuals
as it is shown in Table 2. We also observe similar results when the jackknife,
bootstrap 2 and jackknife-after—bootstrap techniques are used to estimate the true
errors.
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Table 2. Bootstrap residuals for Belgian telephone data

OLS Jack Bootl Boot2 |Jack-Boot |Diag-Boot| RLS

1950 1.2385 1.246 | -4.6086 1.3936 1.3935 -1.0089 0.2679
1951 0.7644 0.771 | -4.5774 0.8999 0.9001 -0.9797 0.1675
1952 0.2602 0.266 | -4.5762 0.3763 0.3762 -0.9804 0.0371
1953 -0.1239 -0.119 -4.455 | -0.0274 -0.027 -0.8612 0.0267
1954 -0.5581 -0.554 | -4.3838 -0.481 -0.4812 -0.792 | -0.0337
1955 -0.9922 -0.989 | -4.3126 | -0.9347 -0.9349 -0.7227 | -0.0942
1956 -1.4164 | -1.4141 | -4.2313 | -1.3784 -1.3786 -0.6435 | -0.1446
1957 -1.8505 | -1.8491 | -4.1601 -1.832 -1.8318 -0.5742 -0.205
1958 -2.1746 | -2.1741 | -39789 | -2.1757 -2.1755 -0.395 | -0.1554
1959 25388 | -2.5391 | -3.8377 | -2.5593 -2.5594 -0.2558 | -0.1458
1960 -2.8929 | -2.8941 | -3.6865 -2.933 -2.9331 -0.1065 | -0.1262
1961 -3.2571 | -3.2591 | -3.5453 | -3.3167 -3.3168 0.0327 | -0.1166
1962 -3.6412 | -3.6441 | -3.4241 | -3.7203 -3.7205 0.1519 -0.127
1963 -3.6354 | -3.6391 | -2.9129 -3.734 -3.7337 0.6612 0.2526
1964 5.6405 5.6359 6.8683 5.5224 5.5224 10.4404 9.9022
1965 5.6363 5.6309 7.3695 5.4987 5.4988 10.9397 | 10.2718
1966 6.9322 6.9259 9.1707 6.7751 6.7754 12.7389 | 11.9414
1967 8.128 8.1209 10.872 79514 79511 14.4381 13.511
1968 9.9239 99158 | 13.1732 9.7277 9.7278 16.7374 | 15.6806
1969 12.4197 | 124108 | 16.1744 | 12.2041 12.2041 19.7366 | 18.5502
1970 -4.9844 | -4.9942 | -0.7244 | -5.2196 -5.2195 2.8359 1.5198
1971 -7.3886 | -7.3992 | -2.6232 | -7.6432 -7.6433 0.9351 | -0.5106
1972 -7.5927 | -7.6042 -2.322 | -7.8669 -7.867 1.2343 -0.341
1973 -7.8969 | -7.9092 | -2.1208 | -8.1906 -8.1908 1.4336 | -0.2715
RSD 5.729 5.743 3.914 6.11 6.11 0.274

When the newly proposed diagnostic-before—bootstrap method is applied to this
data we observe from Table 2 that all the 6 outliers are clearly identified. The
resulting residuals are also very close to the RLS residuals, which we assume as
the true errors. We observe from the RSD wvalues of different residuals that the
performance of the OLS, jackknife, bootstrap 2 and jackknife-after-bootstrap
methods are very poor as they yield very high RSD values. As it is expected,
bootstrap 1 method performs better than other bootstrap methods, but the
performance of the diagnostic-before-bootstrap method is quite outstanding. Its
low RSD value clearly indicates that this method is able to estimate the entire set
of residuals in a way that they become very close to the true errors.



Bootstrapping Regression Residuals 677

LS Jack
[] []
[ ] [}
1d - ° 1( “ ° i
-5l @ -5 @
0 5 1 1 0 5 1 1
Boot 1 Boot 2
[} [}
1 * ¢ 14 “ o ® ’
1 ™ y I3
A\ |,
-5 o
-5
0 5 1 1 0 5 1 1
Jack-Boot Diag-Boot
o ’ .'.

o]
o S
D VU A D VO

Figure 2. Residual plots against errors of different bootstrap techniques for Belgian
telephone data.

Figure 2 shows the performances of different bootstrap techniques to estimate
errors for Belgian telephone data. We observe from this figure that the OLS
residuals break down completely for this data. Similar remark may apply with the
jackknife, bootstrap 2 and jackknife-after-bootstrap residuals. The performance of
bootstrap 1 residuals are good but diagnostic—before-bootstrap residuals perform
best over all and we observe almost a straight line when these residuals are
plotted against the true errors.
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5. Simulation Results

So far we have considered examples to investigate the performance of our
newly proposed diagnostic-before-bootstrap residuals as an improved set of
estimates of the true errors. To understand the role of different estimation
techniques more clearly we require simulation results with a good number of
replications considering a variety of sample sizes. Although this type of data set
is artificial in nature, it is very useful because here we know exactly the real
situation; otherwise there is always uncertainty [see Cook and Hawkins (1990)]
about which observations are unusual.

Now we carry out a simulation experiment to show how the RSD for different
estimation techniques vary with the change in the sample sizes and the error and
leverage structures. We have used five sets of designs in this experiment.

(i) Normal errors: Uniform (0,1) regressors with errors generated from Normal
(0,4) distribution

(i) Single outlier: Errors generated from Normal (0,4) distribution with the
nth observation as outlier.

(iii) Single high leverage outlier: Uniform (0,1) regressor with the nth
observation as high leverage point. Errors are generated from Normal (0,4)
distribution but the nth observation is set as an outlier.

(iv) Multiple (10%) outliers: Errors generated from Normal (0,4) distribution
with the last 10% observations as outliers.

(v) Multiple (10%) high leverage outliers: Uniform (0,1) regressor with the
last 10% observations as points of high leverages. At the same time errors are
generated from Normal (04) distribution with the last 10% observations as
outliers.

For each of the design, Y is computed from equation

Y=20+45X,—15X,+2.5X,+¢ (5.1)

with n = 20, 30, 40, 50 and 100 and the results of RSD for different estimation
techniques and different sample sizes based on 5000 simulations each are
presented in Table 3.
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Table 3. Simulation results of RSD for different bootstrap techniques
Sample | Estimation Single Single high Multiple Multiple
. ) Normal ; leverage ) leverage
size technique outlier . outliers .
outlier outliers
n=20 | OLS 1.000 2.574 6.917 5.768 13.236
Jack 1.001 2.497 6.702 5.736 13.233
Boot 1 0.455 0.506 1.243 1.900 1.630
Boot 2 1.108 2.493 6.219 4745 12.079
Jack-Boot 1.170 2.459 6.217 4.745 12.079
Diag—-Boot 0.457 0.460 0.495 0.528 0.514
n =230 | OLS 1.000 2.059 6.932 6.201 19.487
Jack 1.000 1.998 6.717 6.188 19.482
Boot 1 0.411 0.455 0.972 2.907 2.596
Boot 2 1.067 1.995 6.232 5.599 17.784
Jack-Boot 1.084 1.967 6.230 5.600 17.786
Diag-Boot 0.412 0.413 0.439 0.536 0.520
n =40 | OLS 1.000 1.750 6.946 6.667 25.745
Jack 1.000 1.698 6.730 6.653 25.739
Boot 1 0.382 0.385 0.811 3.392 3.170
Boot 2 1.016 1.695 6.245 6.325 23.495
Jack-Boot 1.037 1.672 6.243 6.325 23.489
Diag-Boot 0.383 0.383 0.403 0.533 0.521
n =50 | OLS 1.000 1.566 6.961 6.931 31.840
Jack 1.000 1.527 6.607 6.916 31.839
Boot 1 0.376 0.380 0.708 3.617 3.433
Boot 2 1.000 1.645 6.332 6.716 31.503
Jack-Boot 1.012 1.623 6.332 6.716 31.581
Diag-Boot 0.377 0.377 0.393 0.538 0.529
n = 100 | OLS 1.000 1.300 7.067 10.546 63.242
Jack 1.000 1.271 7.067 10.523 63.242
Boot 1 0.368 0.369 0.506 6.710 6.515
Boot 2 0.996 1.303 6.248 10.336 63.199
Jack-Boot 1.004 1.303 6.248 10.336 63.199
Diag-Boot 0.368 0.368 0.375 0.685 0.675

We observe from the results given in Table 3 that for normal errors, as the
standard theory tells, the OLS method produces RSD values very close to 1 for
different sample sizes. The performances of OLS and jackknife are very much
similar. But the performances of bootstrap 2 and jackknife-after-bootstrap methods
are not very satisfactory because throughout the simulation they perform less than
the OLS. However, their performances tend to improve with the increase in
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sample sizes. Diagnostic-before-bootstrap and bootstrap 1 method perform best
throughout in the estimation of errors when they are normal as they produces
much better result than the OLS. For a single outlier case, the OLS, jackknife,
bootstrap 2 and jackknife-after—bootstrap produce much higher RSD values than
diagnostic-before-bootstrap and bootstrap 1. But things become worse when
outliers are also points of high leverage. The OLS and jackknife method break
down completely for different sample sizes yielding very high RSD values. The
performances of bootstrap 2 and jackknife-after-bootstrap often become poor. But
it is interesting to note that performances of diagnostic—before-bootstrap and
bootstrap 1 methods are quite satisfactory in this situation. But we face more
serious consequences when 10% outliers are present in the data. We observe the
worst set of results from the OLS followed by the jackknife,
jackknife-after—bootstrap and bootstrap 2 methods. But it is interesting to note
that, for the first time we observe that the so far successful bootstrap 1 method
produces higher RSD values and these values tend to increase with the increase
in sample sizes. Things become even worse when these outliers are associated
with high leverage points. Here all of the estimation techniques except
diagnostic—before-bootstrap breakdown and their corresponding RSD values tend to
increase with the increase in sample size.

5. Conclusions

In this paper we propose a new bootstrap technique suitable for regression
analysis keeping in mind the fact that like real data, bootstrap data also deserve a
thorough examination especially when unusual observations are present in the
data. We present few examples, which clearly show that all of the commonly used
bootstrap techniques fail to produce accurate estimates of the regression
parameters in the presence of a group of outliers. We also observe that things
may become even worse when outliers are also points of high leverages. But the
well-known examples and simulation experiments clearly show that our newly
proposed method, where robust diagnostic is used before bootstrapping become
very successful in a variety of situations. The diagnostic-before-bootstrap
technique does extremely well in the presence of multiple outliers and high
leverage outliers without harming a genuine normal case and performs in a robust
way irrespective of error and leverage structure or sample sizes.
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