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Quasi—Likelihood Estimation for ARCH Modelsl

Sahmyeong Kim?2)

Abstract

In this paper, the quasi-likelihood function was proposed and the
estimators which are the solutions of the estimating equations for
estimation of a class of nonlinear time series models. We compare the
performances of the proposed estimators with those of the ML estimators
under the heavy-railed distributions by simulation.
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1. Introduction

The Box-Jenkins linear time series models which were introduced in the 1970's
have been used for analysing various types of times series data. But they
sometimes could not explain the important characteristics of data especially
financial times ones. In general, the volatilities in the financial data means the
risks and they have been considered very importantly. Engle(1982) proposed the
ARCH(Auto regressive Conditional Heteroscadastic) models which could explained
the volatilities in the data. Bollerslev(1986) generalized the ARCH models which
are called GARCH(Generalized ARCH) models. On the other hand, the statistical
estimation methods for the heteroscadastic time series models have been studied
by numerous researcher. But one of the important assumptions for estimation of
the parameters in the models was the normality of the distributions for the error
terms in the models. This basic assumption has been violated by many examples
in the financial data. One of the methods for solving this problem is to introduce
the different estimation method such as the quasi-likelihood(QL) estimation
proposed by Godambe(1988). Recently Chandra and Taniguchi(2001) pointed out
that the generalized method of moments(GMM) estimation proposed by
Hansen(1982) and the QL estimation methods are basically same and the two
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methods have been studied independently. In this paper, we first consider the QL
estimation method and a class of nonlinear time series models such that as the
autoregressive(AR) model with the ARCH errors. We compare the performance of
the QL estimations with the maximum likelihood(ML) estimations under the
normal and heavy-tailed distributions by simulation.

2. Quasi-likelihood estimation.

Godambe(1985) proposed the optimal estimating functions for a class of time
series models and the estimating function is called the quasi-likelihood estimating
function. Consider the class of quasi-likelihood estimating function with the mean

and the conditional variance such as E(X |JF,_ )=p (60 and
V(X JF ,_) =V (0), where ¢ is the pxl vector of parameters of interests and
{X } is the observed time series data and F, | is the ¢g-field generated by

the past data X, _ Lo Define the quasi-likelihood estimating function as follows.
Sn(9)= ;1@0 k(a)g k(‘g) (1)
where
_[dr(6) dV,(0) V i(0) E(x =1 OIF )
wilO)=|""4p o ; 4
E(x k—/xk(ﬁ)lefl) E(x ET M k(9)|F k,l)

xp— 1t 4(0)

(0=
< [(xk_ﬂk(e))z_vk(a)

It is easily known that E(g ,(0)|F ,_,)=0. The next theorem guarantees the

consistency and asymptotic normality of the estimator which is the solution of the
equation in (1).

Theorem 2.1 Under the regularity conditions, we have
o 7, 2 0,

QD VU T,—0) -% N0, F,(6)

where 79\” is the solution of the estimating equation in (1) and
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2:[ gk(ﬁ)gk(ﬁ) Tle—l]

proof Along the lines of Klinko and Nelson(1978), consistency and asymptotic
normality can be proved. we omit it.

Example 2.1

Consider the following model,

yi= ¢y, te,
e, =V ofh,e,, e, ~iid (0, d?) , h=a)+a e,

Then we have the quasi-likelihood function such as

S (=3 Dcl[ Vim 4y ] 2)
& (vi—¢y,-D*—h,
T Vo, 0
where D=( dt afée) dh;é@) ) = tOl 1 ]
0 5%—1

and :( h h%‘/zE(é‘ 3) )
WYPEE®)  E(eY—n?

In this paper, we only consider the symmetric distribution of error terms and it

makes FE(e?)=(. Then we have C:( h 0 )
0 hiE(ed)—h?
Therefore, we have the quasi-likelthood estimator which is the solution of
S ,(0) =0 and the asymptotic variance of the estimator.

Vau(8,—6) — M0, F Y, (3)

where S ( @\n) = ()and
— 2

y t—1
hlf 0 0
2
1 -1
F= (4)
0 W IEGY—11  hlEEH—1]
0 €2t—1 54;—1
h [E(eh—1] h [E(e%)—1]



654 Sahmyeong Kim

3. Simulation Results

In this section, we consider the AR(1)-ARCH(1) model and we compare the
sample variances of the quasi-likehood(QL) estimators with the maximum
likelihood(ML) estimators under the normal, student’s t, and the double exponential

distributions for the error terms in the model. For the initial values of ¢, ¢, and

a;, we set ¢=0.3, 0.5, ¢ ;=03 and ¢ ,=0.1, then we generate the simulated data

for the AR(1)-ARCH(1) model. In the following tables, we see that the sample
variances of the QL estimators and those of the ML estimators have almost same
values. This means that the ML estimator work quite well under the normal
distribution. In this case of the heavy-tailed distributions such as the student’s-t,
the double exponential distributions, the QL estimators work better than the ML
estimators.

[Table 411 ¢ ,~N(0, 1)

Sample $=0.3 a,=0.3 a,=0.1 $=0.5 a,=0.3 a,70.1 a,=0.1

size mean| s.d

. |mean| s.d. |mean| s.d. |mean| s.d. |mean| s.d. |mean| s.d. |mean| s.d.

MLE |0.299(0.055|0.300|0.045{0.095[0.063|0.199|0.055]0.300 | 0.045|0.095|0.063 | 0.095| 0.063
QL ]0.299/0.063|0.300|0.045]0.0950.063|0.499|0.055|0.300{0.045|0.095|0.063| 0.095|0.063
MLE [0.302]0.045|0.301{0.032|0.096 | 0.055|0.503 | 0.045| 0.301 | 0.032 ] 0.096 | 0.055|0.039| 0.055
QL ]0.302|0.055{0.301|0.055]0.096 |0.063|0.503|0.045|0.301|0.045|0.096 | 0.063| 0.096 | 0.063
MLE |0.305(0.045|0.300|0.032{0.099 |0.055|0.505|0.045]0.300 | 0.032 | 0.0990.055| 0.099| 0.035

1000

1500

2000
QL ]0.305]0.045{0.300{0.032{0.099{0.055|0.50510.045|0.300{0.032]0.100{0.055|0.099 | 0.055
[Table 4.2]1 ¢ ,~ student— #3)
Sample $=0.3 QO:O.S a,=0.1 $=05 a/OZO-S a,=0.1 ;0.1
size mean| s.d. |mean| s.d. |mean| s.d. |mean| s.d. |mean| s.d. |mean| s.d. |mean| s.d.

MLE [0.301 |0.055]0.3130.045|0.087{0.071]0.497|0.055]0.316 | 0.045| 0.087 | 0.071 | 0.088| 0.071
QL |0.297|0.055]0.316]0.045]0.087|0.055|0.497 | 0.055] 0.316{0.045| 0.087 | 0.071 | 0.088 | 0.055
MLE |0.296|0.055|0.315{0.045]0.090 | 0.063 | 0.497 | 0.055 | 0.315| 0.045| 0.090| 0.063 | 0.091 | 0.063
QL ]0.295]0.055]0.315]0.045]0.090|0.055|0.497 | 0.045] 0.314{0.045] 0.091 | 0.055]0.090 | 0.055
MLE |0.296|0.055|0.315{0.045]0.090 | 0.063 | 0.499 [ 0.045 | 0.313| 0.045| 0.093 | 0.063 | 0.093 | 0.063
QL ]0.295]0.055]0.315]0.045]0.090|0.055|0.499 | 0.045]0.313{0.045] 0.093 | 0.055 | 0.093 | 0.055

1000

1500

2000
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[Table 4.3] e ,~ student— #5)

Sample $=0.3 a,=0.3 a,=0.1 $=0.5 @03 a,=0.1 a,=0.1
size mean| s.d. {[mean| s.d. |mean| s.d. |mean| s.d. |mean| s.d. |mean| s.d. |mean| s.d.
MLE |0.299|0.063|0.3320.055]0.091|0.071 | 0.498|0.063 | 0.332{0.055|0.091 | 0.071 | 0.091 | 0.071
1000 QL [0.299]0.063|0.332{0.045|0.091]0.071]0.498|0.055|0.332]0.045| 0.091 | 0.071|0.092 | 0.071
MLE |0.298|0.055{0.332{0.045{0.093|0.071]0.498 | 0.055|0.332 | 0.045]0.093 | 0.071 | 0.092| 0.071
1900 QL [0.298]0.055/0.332{0.045|0.094|0.063|0.498 | 0.055 | 0.332 ] 0.045| 0.093 | 0.063| 0.093 | 0.063
MLE |0.300|0.055]0.330|0.045]0.096| 0.063 | 0.499 | 0.055]0.330| 0.045 | 0.096 | 0.063 | 0.096 | 0.063
0 QL [0.300{0.045|0.330{0.045|0.096 | 0.063|0.499{0.045|0.330 | 0.045| 0.096 | 0.063| 0.096 | 0.063
[Table 4.4] ¢ ,~ double exponential

Sample $=0.3 @,=0.3 @,=0.1 $=0.5 @,=0.3 a,70.1 @,=0.1
size mean| s.d. {[mean| s.d. |mean| s.d. |mean| s.d. |mean| s.d. |mean| s.d. |mean| s.d.
MLE |0.291|0.084]0.294|0.071{0.095|0.095]0.493 |0.084 | 0.294| 0.071 | 0.095| 0.095 | 0.096 | 0.095
1000 QL [0.292{0.055/0.294|0.045|0.094|0.063|0.493 | 0.055 | 0.293 | 0.045| 0.095 | 0.063| 0.096 | 0.063
MLE |0.298|0.077{0.302|0.08410.096|0.095 | 0.498 | 0.077 | 0.302 | 0.084 | 0.097 | 0.095 | 0.098 | 0.095
1900 QL [0.299]0.055|0.302{0.055|0.097|0.063|0.499|0.045|0.301 | 0.055| 0.099 | 0.063| 0.097 | 0.063
MLE |0.303|0.071{0.306|0.063 | 0.086|0.084 | 0.503|0.071 | 0.306 | 0.063 | 0.098 | 0.084 | 0.085 | 0.084
200 QL [0.303{0.045|0.306|0.045|0.086|0.0550.504 | 0.045 | 0.305 | 0.045] 0.099 | 0.055| 0.086 | 0.055

4. Conclusion

Godambe(1985) proposed the optimal estimating function which is called the
quasi-likelihood estimating function for the linear time series models and the
estimating function approach can be applied to a class of nonlinear time series
models. We have shown that the QL estimators which are the solutions of the
equations may work very well under the heavy-tailed distributions. The estimating
function would also be extended for the other class of times series models and
would be applied to analyse the real data such as stock market data in Korea.
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