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On Roots of Perturbed Polynomials

Young Kou Park1)

Abstract

We will derive some results on the perturbation of roots using 
Newton's interpolation formula. And we also compare our results with 
those obtained by Ostrowski by giving some numerical experiments with 
Wilkinson's polynomials.
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1. Introduction and Notations

In solving polynomial equations, the values of the coefficients are usually 

rounded off. In this paper we will approach the problem on the perturbation of 

roots with the aid of Newton's interpolation formula. And then we will apply the 

obtained results to root bound problems and give some numerical experiments. 

Before proceeding, we will give short comments on notations and some known 

results from the theory of divided differences. The set of all complex numbers is 

denoted by C. By Β (z 0 , ρ ), we will always mean the closed disk of radius ρ  

centered at z 0 . For any bounded set S in C, dia(S ) = sup z, z 1∈S ( |z- z 1 | ).

where the points z 0,..., z n  lie inside the countour Γ.

Definition 1.1 Let p ( z )  be a polynomial in the complex variable z . The first 

divided difference of p ( z )  is denoted by p [ z 0, z 1]  and defined by the relation

p [ z 0, z 1 ] =
p ( z 1) - p ( z 0)

z 1 - z 0
.

The n-th divided difference is defined by induction in terms of the (n-1)-th 
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one by the formula;

p [ z 0, z 1,..., z n ] =
p [ z 0,..., z n- 2, z n ] - p [ z 0,..., z n- 2, z n- 1 ]

z n- z n- 1
.

Lemma 1.2 [Thomson (1933) and Tulovsky (1990)]

p [ z 0,..., z n ] =
1
2π i

⌠
⌡Γ

p (z )
(z- z 0 )… (z- zn )

dz,

where the points z 0,..., z n  lie inside the countour Γ.

Fact. The interchange of any two of the arguments does not alter the value of 

the divided difference, which is therefore a symmetric function. Moreover it is 

clear from this formula that p [ z 0, ...,z n ]  is an analytic function of z 0, ...,z n,  

even if some of them coincide. For n+1  coincident arguments z 0 , we obtain the 

equality

p [z 0 , ..., z n ] =
1
n !
p ( n ) (z 0 ).

If p ( z )  is a polynomial of degree n, then by Newton's interpolation formula, 

p ( z )  can be reconstructed uniquely from the values of the divided differences at 

z 0, ...,z n  as follows:

p (z ) = p [ z 0 ] + p [ z 0, z 1 ] (z- z 0 ) + … + p [ z 0, …, zn ] (z- z 0 )… (z- z n- 1 ).

Definition 1.3 

1) For p (z ) = zn+bn-1 z
n-1+…+ b 1z+b 0  with roots q 1, ... ,q n ,

    U (p ) = max {∣q i∣: i=1,..., n }.

2) Ψ  will be denoted by the class of monic complex polynomials of degree n .

3) M : Ψ→ R  is called a root bound functional (rbf) if 

M (p )≥U (p ) for  all p∈ Ψ .

4) M : Ψ→ R  is called an absolute rbf if M (p ) = M ( p̃ )  for 

p (z ) = zn+bn-1 z
n-1+ …+ b 1 z+ b 0 ,

p̃( z ) = zn+c n-1 z
n-1+ …+ c 1z+ c 0

with∣b i∣ = ∣c i∣ for all  i .
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Now some results on this field will be presented without proof. For the proofs 

and references, see Van der Sluis(1970). 

If p (z ) = zn+bn-1 z
n-1+ …+ b 1 z+ b 0 , then by Cauchy's Theorem, the unique 

positive root z 0  of 

zn-∣bn-1∣ z
n-1- …-∣b 1∣ z-∣b 0∣ = 0

is an absolute rbf.  For any p (z ) (≠ zn) ∈ Ψ,  we denote the corresponding z 0  as

Β(p ) = z 0  and also define Β (z
n ) = 0. Then Β  is the best absolute rbf of all 

absolute rbfs. While Β  is optimal, the positive solution Β(p ) = z 0  can't be easily 

calculated. Therefore, other more computable absolute rbfs which are well-known 

from the literature are widely used, see Park (1995) and Van der Sluis (1970). 

2.  Perturbation of roots

Now we will introduce the following result which is related to our research on 

the perturbation of roots. The proof is found in Ostrowski (1960).

Definition 2.1 ( Descarte's rule of signs (Pola and Szeo, 1976))

Let p (z ) = zn+bn-1 z
n-1+ …+ b 1 z+ b 0  be a real polynomial (not the zero 

polynomial) and let v  denote the number of sign changes in the sequence {b k }  of 

its non-zero coefficients, and let r  denote the number of its real positive roots 

(each root counted with its proper multiplicity), then v- r  is even and non- 

negative. 

Theorem 2.2 [Park (1993)] Let p (z ) = zn+bn-1 z
n-1+ …+ b 1 z+ b 0  with roots 

q 1,..., q n , p̃ ( z ) = z
n+cn-1 z

n-1+ …+ c 1 z+ c 0  with roots q 1̃ ,... , q ñ ,

ρ (n ) = ( ∑
n- 1

i=1
∣b i-c i∣m

i )
1
n

,  m = m (∣q i∣,∣q ĩ∣).
(2.1)

Then the roots q i  and q ĩ  can be ordered in such a way that 

∣q i- q ĩ∣≤dia (Ci )-ρ(n ), i=1,...,n ,

where the roots Ci  is the connected component containing q i  of 

∪ n
i=1 Β (q i, ρ(n )) , and q ĩ  is the perturbed root of q i  for each i .
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Theorem 2.3 Let p (z ) = z n+bn-1 z
n-1+ …+ b 1 z+b 0  with roots q 1,..., q n , 

r (z )  some polynomial of degree ≤n-1, p̃ (z) = z n+cn-1 z
n-1+ …+ c 1 z+ c 0  

with roots q 1̃ ,..., q ñ . If k (n )  is the positive solution of the equation;

kn-∣r [q 1 ]∣-∣r [ q 1, q 2 ]∣k-…-∣r [ q 1, …, qn ]∣k
n-1 = 0 (2.2)

Then

 (1) p ( z )  and p̃ (z )  have the same number of roots, counting multiplities, in 

each connected component of the region G= ∪n
i=1 Β (q i ,k (n) ).

 (2) If Gi  is the connected component of G  containing q i , then

∣q i- q ĩ∣≤ dia (C i )- k (n ),  i= 1,...,n . (2.3)

where q ĩ  is the perturbed root of q i  for each i .

Proof.  By Descarte's rule of signs [ Henrici (1974) and Pola and Szeo (1976)] 

we know that the equation (2.2) has only one positive solution. Suppose k (n )  is 

the positive solution of the equation (2.2). For δ＞ 0 , let us set 

G δ = ∪
n
i=1 Β ( q i;k (n )+δ ). For all z  on the boundary of G δ , we have  

∣z-q i∣≥ k (n )+δ＞ k(n )   for  all i .

Newton's interpolation formula gives

r (z ) = r [ q 1 ] + r [ q 1,q 2 ] (z- q 1 ) + …

 + r [q 1 ,..., q n ] (z- q 1 )… (z- q n- 1 ) .

By using the fact that

| r [ q 1 ] | + | r [ q 1, q 2 ] | | z- q 1 | + …+| r [ q 1, …, q n ] | |z- q 1 |… | z- qn- 1 |

∣z- q 1∣…∣z- q n∣

is a decreasing function of | z- q i |＞ 0 , we have, for all z  on the boundary of 

G δ ,

|r (z ) |
|p (z ) |

≤
|r [ q 1 ] |+ |r [q 1 , q 2 ] | ( k(n )+δ ) +… +|r [ q 1, …,q n ] |( k(n ) + δ )

n- 1

( k (n ) + δ ) n

          ＜
|r [ q 1 ] |+ |r [q 1 , q 2 ] |k (n ) + … +|r [ q 1, …, q n ] |k (n )

n- 1

k (n ) n
=1.
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From Rouche's Theorem, we see that p ( z )  and p̃ (z )  have the same number 

of roots in each connected component of G δ̃ , where G δ̃  is the interior of G δ  

Since δ  is arbitrary, we can see that p ( z )  and p̃ (z )  have the same number of 

roots, counting multiplicities, in each connected component of G. Moreover, from 

the well known fact that the roots of a polynomial are continuous functions of the 

coefficients, the connected component of containing q i  has also its perturbed root 

q ĩ. This proves the first statement (1).

For the second part (2), if Ci  is the connected component containing q i, then 

from the above proof, the perturbed root q ĩ  of q i  lies in Ci. So we see that 

∣q i- q ĩ∣≤dia (Ci ) -k (n )  because Ci  is the union of some closed disks of radius 

k (n ) .

As a corollary of Theorem 2.3, we will derive Cauchy's Theorem on bounding 

the roots of polynomial.

Theorem 2.4 Let p̃ (z ) = zn+bn-1 z
n-1+ …+ b 0 .  If k (n )  is the positive 

solution of the equation

kn= ∣b 0∣+∣b 1∣k+…+∣bn-1∣k
n-1 , (2.4)

then all roots of p̃ (z )  lie in the disk Β(0, k (n ) ).

Proof.  Suppose that k (n )  is the positive solution of the equation (2.4). From 

Theorem 2.3, let us set p(z )=z n and r (z ) = b n- 1z
n- 1 + … + b 1 z+ b 0 . Since 

each coefficient b i=r[0,...,0], the number of 0 in the bracket is i+1, by (1) of 

Theorem 2.3 we can see that Β(0, k(n )) contains all roots of p̃(z).

Remark. (1) Let qn , be the largest absolute value of the roots of p ( z ) . Then 

the estimate ρ (n )  in Theorem 2.2 increases as ∣qn∣  increases. However, the 

positive solution k (n )  of the equation (2.2) does not change when ∣qn∣  does 

increase because r [ q 1, q 2,... ,q n- 1 , q n ] = r [ q 1, p 2,..., q n- 1, q n' ]  for any q n' .

(2) Theorem 2.2 says that because of the 1/n  exponent, the bounds between q i  

and q ĩ  are weak in general for small perturbing polynomial r (z ) .

(3) If k (n )  is the positive solution of the equation (2.2), then from the 

following example, we can see that the estimate ∣q i- q ĩ∣≤ k (n )  does not hold 

in general.

Consider p (z ) = z (z-0.01 ) (z+1.8 )  with roots q 1 = 0, q 2 = 0.01, q 3 = -1.8 .
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Now take r (z ) = -1  then p (z ) + r (z ) = z (z-0.01 ) (z+1.8 )-1  with roots 

q 1̃≈0.6, q 2̃≈-1.2+0.3i, q 3̃≈-1.2-0.3i .

From the equation (2.2), we get the positive solution k ( 3)= 1 . Therefore it is 

impossible to get ∣q i- q ĩ∣≤1  because ∣q 2- q 2̃∣≤1.3＞1.

(4) Theorem 2.3 does not always give better estimate than Theorem 2.2.  For 

example, let q＞ 0 , 

p (z ) = (z- q) 2 = z 2 - 2q z+ q 2 , p̃ (z ) = (z+ q) 2 = z 2 + 2q z+ q 2 .

The maximum of the absolute values of the roots of p ( z )  and p̃ (z )  is q , 

r (z ) = p̃ (z ) - p (z ) = 4 q z  and ρ (2 ) = 2q  in Theorem 2.2. Note that this 

estimate is the actual distance between the roots. On the other hand r [ q ] = 4 q 2  

and r [ q , q ] = 4 q . The positive root k ( 2)  of k 2 = 4 q+ 4 q k  is clearly ＞2 q. 

Taking p (z ) = (z- q ) n  and p̃ (z ) = (z+ q ) n  gives an example of degree n  

which the result from Theorem 2.2 is better.

3. Applications and Numerical Results

As background on this problem, we may consider the Gershgorin disk theorem [ 

Henrici (1974) and Johnson and Riess (1982)].

Let A=(a ij )  be a complex matrix of order n  and define the absolute

off-diagonal row and column sums by 

r k= ∑
n

j(≠k)= 1
∣ak j∣  and c k= ∑

n

j (≠k)= 1
∣a jk∣ ,

respectively. For k= 1, ..., n , set 

Rk= { z :∣z- akk∣≤ r k }  and Ck= { z :∣z-akk∣≤ c k }.

Then

(1) If λ  is any eigenvalue of A, then λ∈ Ck  for some k  and λ∈ Rj  for some 

j .

(2) Each component of the set ∪n
k=1Rk (∪

n
k=1 Ck )  contains as many eigenvalues 

of A as points aii.

To apply the Gershgorin Theorem to the above problem, we need to find a 

matrix A  so that the characteristic polynomial of A= (a ij ), a ij∈a 1,...,a t  for 
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each i , corresponds to

p ( z ) = zn+bn-1 z
n-1+ … +b 1 z+ b 0 .

However, there is little hope that a matrix can be easily calculated unless all 

a i= 0 . But, as a special case we note that 

p ( z ) = zn+bn-1 z
n-1+ …+ b 1 z+b 0

is the characteristic polynomial of the matrix,

A=

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

0 1 0 ⋅ ⋅ ⋅ 0 0
0 0 1 0 ⋅ ⋅ ⋅ 0
⋅
⋅
⋅
0 0 ⋅ ⋅ ⋅ ⋅ ⋅ 1
-b 0 -b 1 ⋅ ⋅ ⋅ ⋅ ⋅ -b n-1

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

Using the Gerschgorin Theorem, we have the following results. 

If C 0 = { z∣∣z∣≤∣b 0∣}, Ck= { z∣∣z∣≤1+∣b k∣}, 1≤ k≤n-2 , 

  Cn-1 = { z∣∣z+bn-1∣≤1} , then

(1) All the roots of p ( z )  lie in ∪n-1
i=1 Ci ,

(2) All the roots of p ( z )  lie in the circle ∣z∣≤ max ( 1, ∑
n- 1

i=0
∣b i∣) .

Now we will give some numerical experiments with Wilkinson's polynomials for 

the results obtained in section 2. And using well known absolute rbfs, we also 

compare our results Theorem 2.3, with Theorem 2.2 obtained by Ostrowski (1960).

We note that the positive solution k ( n )  of (2.2) can't be easily calculated. 

However, we can find an approximation of k ( n )  by using previously discussed 

root bound functionals (rbfs) of polynomials.

Let k̃ (n )  be a root bound of the equation (2.2) obtained by using absolute rbfs.

In order to apply (2.1), we introduce a way to find a convenient estimate of 

ρ(n)  as follows; Let m̃ = max {M ( p ),M ( p̃) } , where M  is an absolute rbf.

ρ̃ (n) = ( ∑
n- 1

i=1
∣b i-c i∣ m̃

i

)
1
n

. (3.1)
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So we have

∣q i- q ĩ∣≤dia( C ĩ )- ρ̃(n),  i= 1,...,n

where Cĩ  is the connected component containing q i  of ∪
n
i=1B ( q i, ρ̃(n)) .

As application of Theorem 2.3, we will consider the following problem. If 

p ( z ) = zn+bn-1 z
n-1+ … +b 1 z+ b 0  is given, then for any given t-points 

a 1,...,a t  in C, we can find disks Β ( a i, ρ )  such that the union of all disks 

Β ( a i, ρ )  contains all roots of p ( z ) .

Let us consider p̃ ( z ) = z 4-12 z 3+40 z 2-20 z+24  with roots

0.17+0.81 i , 0.17-0.81 i ,

5.83+1.16 i , 5.83-1.16 i .

When 0 and 5 are given, we want to find k( 4)  so that B ( 0, k( 4))∪B( 5, k( 4))  

contains all roots of p̃ ( z ) . To apply Theorem 2.3, choose 

p ( z ) = z 2 (z-5)2 = z 4-10 z 3+25 z 2 , 

then

r ( z ) = p̃ (z) - p (z) = -2 z 3+15 z 2-20 z-24 .

From r [0] = 24 , r [ 0,0]= 20 , r [0,0,5]=-5 , r [ 0,0,5,5]= 2 , we get the 

following equation by (2.2);

k 4-2 k 3-5 k 2-20 k-24 = 0 ,

which has the positive solution

k ( 4) ≈4.43 , k̃( 4)≈5.43  by rbf.

Therefore, all roots of p̃ ( z )  lie in B ( 0, 4.43 )∪B ( 5, 4.43 ) . From Theorem 2.2, 

we obtain 

ρ(4)≈5.75 , ρ̃ ( 4)= 15.34

Consider Wilkinson's polynomial [see Wilkinson (1963)],

w (z) = (z-1)(z-2)… (z-n)  and 

r (z) = 0.002 z n- 1 . 
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β ( n) = max(∣q i- q ĩ∣) . (3.2)

Let us recall that k (n)  is the positive solution of the equation;

kn-∣r [q 1 ]∣-∣r [q 1 , q 2]∣k-…-∣r[q 1,…,qn]∣k
n-1 = 0. (3.3)

And recall that

ρ (n)= ( ∑
n- 1

i=1
∣b i-c i∣m

i)
1
n

, m= max (∣q i∣,∣q ĩ∣).
(3.4)

Then we obtain the following numerical results.

<Numerical Experiments with Wilkinson's polynomial>

deg w (z) ρ(n) ρ̃(n) k(n) k̃(n) β(n)

6 1.6 6.1 0.8 1.2 0.3

8 2.8 10.6 1.6 2.6 1.1

10 4.5 27.5 2.7 4.2 2.1

12 6.5 45.2 4.0 6.6 3.3

15 10.1 81.4 6.7 10.8 5.5

20 17.8 171.3 12.7 20.1 10.3

Note that we used the absolute rbf S ( p )  to estimate k̃(n) for n＞7 , and 

R ( p )  for n = 6, 7 , and used L ( p )  to estimate ρ̃(n) for the best estimate, for 

the references of the absolute rbfs, see Park (1995) and Van der Sluis (1970).
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