Adenosine and Purine Nucleosides Prevent the Disruption of Mitochondrial Transmembrane Potential by Peroxynitrite in Rat Primary Astrocytes

  • Choi, Ji-Woong (Department of Pharmacology, College of Pharmacy, Seoul National University) ;
  • Yoo, Byung-Kwon (Department of Pharmacology, College of Pharmacy, Seoul National University) ;
  • Ryu, Mi-Kyoung (Department of Pharmacology, College of Pharmacy, Seoul National University) ;
  • Choi, Min-Sik (Department of Pharmacology, College of Pharmacy, Seoul National University) ;
  • Park, Gyu-Hwan (Department of Pharmacology, College of Pharmacy, Seoul National University) ;
  • Ko, Kwang-Ho (Department of Pharmacology, College of Pharmacy, Seoul National University)
  • 발행 : 2005.07.01

초록

Previously, we have shown that astrocytes deprived of glucose became highly vulnerable to peroxynitrite, and adenosine and its metabolites attenuated the gliotoxicity via the preservation of cellular ATP level. Here, we found that adenosine and related metabolites prevented the disruption of mitochondrial transmembrane potential (MTP) in glucose-deprived rat primary astrocytes exposed to 3-morpholinosydnonimine (SIN-1), a peroxynitrite releasing agent. Exposure to glucose deprivation and SIN-1(2h) significantly disrupted MTP in astrocytes, and adenosine prevented it in dose-dependent manner with an $EC_{50}\;of\;5.08{\mu}M$. Adenosine also partially prevented the cell death by myxothiazol, a well-known inhibitor of mitochondrial respiration. Blockade of adenosine deamination or intracellular transport with erythro-9-(-hydroxy-3-nonyl)adenosine (EHNA) or S-(4-nitrobenzyl)-6-thioinosine (NBTI), respectively, completely reversed the protective effect of adenosine. Other purine nucleos(t)ides including inosine, guanosine, ATP, ADP, AMP, ITP, and GTP also showed similar protective effects. This study indicates that adenosine and related purine nucleos(t)ides may protect astrocytes from peroxynitrite-induced mitochondrial dysfunction.

키워드

참고문헌

  1. Bal-Price, A. and Brown, G. C., Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J. Neurosci., 21, 6480-6491 (2001) https://doi.org/10.1523/JNEUROSCI.21-17-06480.2001
  2. Bell, M. J., Kochanek, P. M., Carcillo, J. A., Mi, Z., Schiding, J. K., Wisniewski, S. R., Clark, R. S., Dixon, C. E., Marion, D. W., and Jackson E., Interstitial adenosine, inosine, and hypoxanthine are increased after experimental traumatic brain injury in the rat. J. Neurotrauma., 15, 163-170 (1998) https://doi.org/10.1089/neu.1998.15.163
  3. Beltran, B., Mathur, A., Duchen, M. R., Erusalimsky, J. D., and Moncada, S., The effect of nitric oxide on cell respiration: A key to understanding its role in cell survival or death. Proc. Natl. Acad. Sci. U.S.A., 97, 14602-14607 (2000) https://doi.org/10.1073/pnas.97.26.14602
  4. Choi, I. Y., Lee, S. J., Ju, C., Nam, W., Kim, H. C., Ko, K. H., and Kim, W. K., Protection by a manganese porphyrin of endogenous peroxynitrite-induced death of glial cells via inhibition of mitochondrial transmembrane potential decrease. Glia, 31, 155-164 (2000) https://doi.org/10.1002/1098-1136(200008)31:2<155::AID-GLIA70>3.0.CO;2-1
  5. Delgado-Esteban, M., Almeida, A., and Bolanos, J. P., DGlucose prevents glutathione oxidation and mitochondrial damage after glutamate receptor stimulation in rat cortical primary neurons. J. Neurochem., 75, 1618-1624 (2000) https://doi.org/10.1046/j.1471-4159.2000.0751618.x
  6. Erecinska, M. and Silver, I. A. ATP and brain function. J. Cereb. Blood Flow Metab., 9, 2-19 (1989) https://doi.org/10.1038/jcbfm.1989.2
  7. Gonzalez-Polo, R. A., Soler, G., Alonso, J. C., Rodriguez-Martin, A., and Fuentes, J. M., $MPP^{+}$ causes inhibition of cellular energy supply in cerebellar granule cells. Neurotoxicology, 24, 219-225 (2003) https://doi.org/10.1016/S0161-813X(02)00164-X
  8. Gow, A. J., Thom, S. R., and Ischiropoulos, H., Nitric oxide and ONOO'-mediated pulmonary cell death. Am. J. Physiol., 274, L112.L118 (1998) https://doi.org/10.1152/ajpcell.1998.274.1.C112
  9. Hagberg, H., Andersson, P., Lacarewicz, J., Jacobson, I., Butcher, S., and Sandberg, M., Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia. J. Neurochem., 49, 227-231 (1987) https://doi.org/10.1111/j.1471-4159.1987.tb03419.x
  10. Haun, S. E., Segeleon, J. E., Trapp, V. L., Clotz, M. A., and Horrocks, L. A., Inosine mediates the protective effect of adenosine in rat astrocyte cultures subjected to combined glucose-oxygen deprivation. J. Neurochem., 67, 2051-2059 (1996) https://doi.org/10.1046/j.1471-4159.1996.67052051.x
  11. Heales, S. J. and Bolanos, J. P., Impairment of brain mitochondrial function by reactive nitrogen species: the role of glutathione in dictating susceptibility. Neurochem. Int., 40, 469-474 (2002) https://doi.org/10.1016/S0197-0186(01)00117-6
  12. Ju, C., Yoon, K. N., Oh, Y. K., Kim, H. C., Shin, C. Y., Ryu, J. R., Ko, K. H., and Kim, W. K., Synergistic depletion of astrocytic glutathione by glucose deprivation and peroxynitrite: Correlation with mitochondrial dysfunction and subsequent cell death. J. Neurochem., 74,1989-1998 (2000) https://doi.org/10.1046/j.1471-4159.2000.0741989.x
  13. Jurkowitz, M. S., Litsky, M. L., Browning, M. J., and Hohl, C. M., Adenosine, inosine, and guanosine protect glial cells during glucose deprivation and mitochondrial inhibition: correlation between protection and ATP preservation. J. Neurochem., 71, 535-548 (1998) https://doi.org/10.1046/j.1471-4159.1998.71020535.x
  14. Kobayashi, S., Conforti, L., Pun, R. Y. K., and Millhorn, D. E., Adenosine modulates hypoxia-induced responses in rat PC12 cells via $A_{2A}$ receptor. J. Physiol., 508, 95-107 (1998) https://doi.org/10.1111/j.1469-7793.1998.095br.x
  15. Litsky, M. L., Hohl, C. M., Lucas, J. H., and Jurkowitz, M. S., Inosine and guanosine preserve neuronal and glial cell viability in mouse spinal cord cultures during chemical hypoxia. Brain Res., 821, 426-432 (1999) https://doi.org/10.1016/S0006-8993(99)01086-0
  16. Lizasoain, I., Moro, M. A., Knowles, R. G., Darley-Usmar, V., and Moncada, S., Nitric oxide and ONOO' exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose. Biochem. J., 314, 877-880 (1996) https://doi.org/10.1042/bj3140877
  17. Mazzio, E., and Soliman, K. F. A., D-(+)-glucose rescue against 1-methyl-4-phenylpyridinium toxicity through anaerobic glycolysis in neuroblastoma cells. Brain Res., 962, 48-60 (2003) https://doi.org/10.1016/S0006-8993(02)03695-8
  18. Michel, P. P., Marien, M., Ruberg, M., Colpaert, F., and Agid, Y., Adenosine prevents the death of mesencephalic dopaminergic neurons by a mechanism that involves astrocytes. J. Neurochem., 72, 2074-2082 (1999) https://doi.org/10.1046/j.1471-4159.1999.0722074.x
  19. Packer, M. A. and Murphy, M. P., ONOO- formed by simultaneous nitric oxide and superoxide generation causes cyclosporin A-sensitive mitochondrial calcium efflux and depolarisation. Eur. J. Biochem., 234, 231-239 (1995) https://doi.org/10.1111/j.1432-1033.1995.231_c.x
  20. Sims, N. R. and Anerson, M. F., Mitochondrial contributions to tissue damage in stroke. Neurochem. Int., 40, 511-526 (2002) https://doi.org/10.1016/S0197-0186(01)00122-X
  21. Shin, C. Y., Jang, E. S, Choi, J. W., Ryu, J. R., Kim, W. K., Kim, H. C., Choi, C. R., and Ko, K. H., Adenosine and purine nucleosides protect rat primary astrocytes from peroxynitritepotentiated, glucose deprivation-induced death: preservation of intracellular ATP level. Exp. Neurol., 176, 175-182 (2002) https://doi.org/10.1006/exnr.2002.7913