Effects of noninvasive electrical stimulation on osseointegration of endosseous implants;A histomorphometric evaluation in the rabbit tibia

비침습적인 전기자극이 임프란트의 골융합에 미치는 영향;토끼경골에서의 조직계측학적 평가

  • Sohn, Sung-Bae (Department of Periodontology, College of Dentistry, Kyungpook National University) ;
  • Park, Jin-Woo (Department of Periodontology, College of Dentistry, Kyungpook National University) ;
  • Suh, Jo-Young (Department of Periodontology, College of Dentistry, Kyungpook National University)
  • 손성배 (경북대학교 치과대학 치주과학교실) ;
  • 박진우 (경북대학교 치과대학 치주과학교실) ;
  • 서조영 (경북대학교 치과대학 치주과학교실)
  • Published : 2005.09.30

Abstract

The procedure that enhances osteogenesis and shortens the healing period is required for successful implant therapy. It has been introduced that osteogenesis is enhanced by the generation of electric field. Many researchers have demonstrated that application of electric and electromagnetic field promote bone formation. It also has been shown that electrical stimulation enhances peri-implant bone formation. Recently, several investigators have reported that noninvasive electrical stimulation using negatively charged electret such as polytetrafluoroethylene(PTFE) promotes osteogenesis. Therefore, we were interested in the effect of noninvasive electrical stimulation using negatively charged electret on the periimplant bone healing. After titanium implant were installed in the proximal tibial metaphysis of New Zealand white rabbit, negatively charged PTFE membrane fabricated by corana dischage was inserted into the inner hole of the experimental implant and noncharged membrane was applied into control implant. After 4 weeks of healing, histomorphometric analysis was performed to evaluate peri-implant bone response. The histomorphometric evaluations demonstrated experimental implant tended to have higher values in the total bone-to-implant contact ratio(experimental ; $49.9{\pm}13.52%$ vs control ; $37.5{\pm}19.44%$) , the marrow bone contact ratio(experimental ; $34.94{\pm}13.32%$ vs control ; $24.15{\pm}13.69%$), amount of newly formed bone in the endosteal region(experimental ; $1.00{\pm}0.30mm$ vs control ; $0.61{\pm}0.24mm$) and bone area in the medullary canal(experimental ; $13.55{\pm}4.98%$ vs control ; $9.03{\pm}3.05%$). The mean values of the amount of newly formed bone(endosteal region) and bone area(medullary canal) of the experimental implant demonstrated a statistically significant difference as compared to the control implant(p<0.05). In conclusion, noninvasive electrical stimulation using negatively charged electret effectively promoted peri-implant new bone formation in this study. This method is expected to be used as one of the useful electrical stimulation for enhancing bone healing response in the implant therapy

Keywords

References

  1. Branemark P-I, Adell R. Breine U, et al. Intraosseous anchorage of dental prosthesis. I. Experimental studies, Scand J Plast Reconstr Surg 1969; 3: 81-100 https://doi.org/10.3109/02844316909036699
  2. Branemark P-I. Osseointegration and its experimental background, J Prosthet Dent 1983:50:399-410. https://doi.org/10.1016/S0022-3913(83)80101-2
  3. Zarb GA Schmitt A. The longitudinal clinical effectiveness of osseointegrated dental implants : The Toronto study. Part I : Surgical results. J Prosthet Dent 1990;63:451-457 https://doi.org/10.1016/0022-3913(90)90237-7
  4. Henry PJ, Laney WR, Jemt T, et al. Osseointegrated implants for singletooth replacement : A prospective 5year multicenter study. Int J Oral Maxillofac Implants 1996; 11: 450-455
  5. Zarb GA. A prosthodontist's perception of osseointegration. In : Worthington P, Branemark P-I (eds). Advanced Osseointegration Surgery. Application in the maxillofacial region: Quintessence 1992 :13
  6. Adell R. Eriksson B. Lekholm U. Brånemark P-I & Jemt T. A long-term follow-up study of osseointegrated implants in the treatment of the totally edentulous jaw. Int J Oral Maxillofac Implants 1990;5:347-359
  7. Friberg B. Nilson H, Olsson M & Palmquist C. MK II : the self-tapping Branemark implant. 5-year result of a prospective 3-center study. Clin Oral Implants Res 1997: 8: 279-285 https://doi.org/10.1034/j.1600-0501.1997.080405.x
  8. Jaffin RA, Berman CL. The excessive loss of Branemark fixtures in type IV bone : A 5 year analysis. J Periodontol 1991:62:2-4 https://doi.org/10.1902/jop.1991.62.1.2
  9. Albrektsson T. Lekholm U. Osseointegration: Current state of the art. Dent Clin North Am 1989;33:537-554
  10. Buser D. Schenk RK. Steinemann S. et al. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 1991 ; 25: 889-902 https://doi.org/10.1002/jbm.820250708
  11. Wennerberg A, Albrektsson T. Andersson B. Krol JJ. A histomorphometric and removal torque study of screwshaped titanium implants with three different surface topographies. Clin Oral Implants Res 1995; 6: 24-30 https://doi.org/10.1034/j.1600-0501.1995.060103.x
  12. Lacefield WR. Current status of ceramic coatings for dental implants. Implant Dent 1998;7:315-322 https://doi.org/10.1097/00008505-199807040-00010
  13. Callen DP. Hahn J. Hebel K. et al. Retrospective multicenter study of an anodized. tapered. diminishing thread implant success rate at exposure. Implant Dent 2000; 9: 329-336. https://doi.org/10.1097/00008505-200009040-00008
  14. Roessler S. Born R, Scharnweber D. et al. Biomimetic coatings functionalized with adhesion peptides for dental implants. J Mater Sci Mater Med 2001: 12 :871-877 https://doi.org/10.1023/A:1012807621414
  15. Elmengaard B. Bechtold JE. Soballe K. In vivo study of the effect RGD treatment on bone ongrowth on press-fit titanium alloy implants. Biomaterials 2005;26:3521-3516 https://doi.org/10.1016/j.biomaterials.2004.09.039
  16. Sykaras N. Woody RD. Lacopino AM. Triplett RG. Nunn ME. Osseointegration of dental implants complexed with rhBMP-2: a comparative histomorphometric and radiographic evaluation. Int J Oral Maxillofac Implants 2004; 19: 667-678
  17. Fukada E. Yasuda I. On the piezoelectric effect of bone. J Physical Soc Jap 1957;12:1158-1169 https://doi.org/10.1143/JPSJ.12.1158
  18. Yasuda I. Fundamental aspects of fracture treatment. J Kyoto Med Soc 1953 ;4:395
  19. Bassett CAL. Pawluk RJ. Becker RO. Effect of electric currents on bone formation in vivo. Nature 1964;204:652 https://doi.org/10.1038/204652a0
  20. Pollack S. R. Bioelectric properties of bone endogenous electrical signals. Orthop Clin North Am 1984;15:3-14
  21. Bassett CAL & Becker R.O. Generation of electric potentials by response to mechanical stress. Science 1962; 134: 1063-1064
  22. Brighton CT. Adler S. Blank J. Cathodic oxygen consumption and electrically induced osteogenesis. Clin Orthop 1975: 107:277-289 https://doi.org/10.1097/00003086-197503000-00033
  23. Inoue S. Ohashi S. Kajikawa T. The effect of electric stimulation on the differentiation to the bone. Orthop Res Sci 1980:7:501-507
  24. Matsunaga S. Sakou T. Yoshikuni N. Intramedullary callus induced by weak diret current stimulation Serial changes in the alkaline phosphatase activity at the site of electricity induced callus formation. J Japan Bioelect Res Soc 1988:2:67-71
  25. Davidovitch Z. Korostoff E. Finkelson MD. Effect of electric currents on gingival cyclic nucleotides in vivo. J Periodont Res 1980:15:355-362
  26. Fizsimmons RJ. Strong D. Mohan S. Baylink DJ. Low-amplitude. low-frequency electric field stimulated bone cell proliferation may in part be mediated by increased IGF-II release. J Cell Physiol 1992: 150: 84-89 https://doi.org/10.1002/jcp.1041500112
  27. Wang Q, Zhong S. Quyang J. et al. Osteogenesis of electrically stimulated bone cells mediated in part by calcium ion. Clin Orthop 1998:348:259-268
  28. Shandler HS. Weinstein S. Nathan LE. Facilitated healing of osseous lesions in the canine mandible after electrical stimulation. J Oral Maxillofac Surg 1979:37:787-792
  29. Esterhani JL.. Friedenberg ZB.. Brighton CT. Black J. Temporal course of bone formation in response to constant direct current stimulation. J Orthop Res 1985:3:137-139 https://doi.org/10.1002/jor.1100030202
  30. Bassett CA, Pawluk RJ. Pilla AA. Augmentation of bone repairs by inductively coupled electromagnetic fields. Science 1974: 184:575-577 https://doi.org/10.1126/science.184.4136.575
  31. Fizsimmons RJ. Ryaby TJ, Magee FP, Baylink DJ. Combined magnetic fields increased net calcium flux in bone cells. Calcif Tissue Int 1994:55:376-380 https://doi.org/10.1007/BF00299318
  32. Abeed RI. Naseer M. Abel EW. Capacitively coupled electrical stimulation treatment : results from patients with failed long bone fracture unions. J Orthop Trauma 1998:12:510-513 https://doi.org/10.1097/00005131-199809000-00015
  33. Shigino T. Ochi M. Kagami H. Sakaguchi K. Nakade O. Application of capacitively coupled electric field enhances periimplant osteogenesis in the dog mandible. Int J Prosthodont 2000: 13: 365-372
  34. Fridenberg ZB, Harlow MC. Brighton CT. Healing of nonunion of the medial malleolus by means of direct current : A case report. J Trauma 1971: 11: 883-885 https://doi.org/10.1097/00005373-197110000-00010
  35. Lavine LS. Lustrin I. Shamos MH. Rinaldi RA. Liboff AR. Electric enhancement of bone healing. Science 1971:175:1118-1121
  36. Connolly JF. Selection, evaluation and indications for electrical stimulation of ununited fractures. Clin Orthop 1981: 161: 39-53
  37. Vingerling PA, van del Kuji P. deGroot K. Sillevis PAE. Non-invasive treatment of alveolar wound. In : Electrical properties of bone and cartilage. Brighton CT, Black J and Pollack S, Eds., New York: Grane and Stratton 1979: 341-346
  38. Norton LA. Implications of bioelectric growth control in orthodontics and dentistry. Angle Orthod 1975:45:34-42
  39. Matsumoto H. Ochi M. Abiko Y. et al. Pulsed electromagnetic fields promote bone formation around dental implants inserted into femur of rabbits. Clin Oral Implants Res 2000; 11: 354-360 https://doi.org/10.1034/j.1600-0501.2000.011004354.x
  40. Brighton CT. The semi-invasive method of treating nonunion with direct current. Orthop Clinics N Am 1984:15:33-46
  41. Yasuda I. Electrical callus and callus formation by electret. Clin Orthop Related Res 1977;124:53-56
  42. Chierico A. Valentini R. Majzoub Z, et al. Electrically charged GTAM membranes stimulates osteogenesis in rabbit calvarial defect. Clin Oral Implants Res 1999:10:415-424 https://doi.org/10.1034/j.1600-0501.1999.100508.x
  43. 권용수, 박진우, 이재목, 서조영. Charged membrane에 의한 negatively electric field가 토끼 장골의 골 치유에 미치는 영향. 대한치주과학회지 2004; 34: 551-562
  44. Kobayashi T, Nakamura S, Yamashita K. Enhanced osteobonding by negative surface charge of electrically polarized hydroxyapatite. J Biomed Mater Res 2001:57:477-484 https://doi.org/10.1002/1097-4636(20011215)57:4<477::AID-JBM1193>3.0.CO;2-5
  45. Sul Y-T, Johansson CB, Roser K. Albrektsson T. Qualitative and quantitative observations of bone tissue reactions to anodized implants. Biomaterials 2002: 23: 1809-1817 https://doi.org/10.1016/S0142-9612(01)00307-6
  46. Wheeler SL. Eight-year clinical retrospective study of titanium plasma-sprayed and hydroxyapatite-coated cylinder implants. Int J Oral Maxillofac Implants 1996;11:340-350
  47. John TL. A possible mechanism for the effect of electrical potential on apatite formation in bone. Clin Orthop 1968; 56 :261-273
  48. Hasting GW & Mahmud FA. Electrical effects in bone. J Biomed Eng 1988; 10:515-521 https://doi.org/10.1016/0141-5425(88)90109-4
  49. Steigenga J, Al-Shammari K, Misch C, et al. Effect of implant thread geometry on percentage of osseointegration and resistance to reverse torque in the tibial of rabbits. J Periodontol 2004;75: 1233-1241 https://doi.org/10.1902/jop.2004.75.9.1233
  50. Cordioli G, Majzoub Z. Piattelli A, Scarano A, Removal torque and histomorphometric investigation of 4 different titanium surfaces: An experimental study in the rabbit tibia. Int J Oral Maxillofac Implants 2000: 15: 668-674
  51. Spadaro JA. Electrical osteogenesis role of electrical material. In-Brighton CT et al., eds. Electrical Properties of Bone and Cartilage. Experimental Effects and Clinical Application. New York : Grune and Stratton: 1979: 189-196
  52. Buch F, Nannmark U, Albrektsson T. Vascular reactions during electrical and electromagnetical stimulation. BRAGS Abstract 1984:4: 17