References
- Akazawa, T. (1953), "Tension test method for concrete", Int. Assoc. of Testing and Research Laboratories for Materials and Structures, Bull. No. 16.
- Attard, M.M. and Tin-Loi, L. (2005), "Numerical simulation of quasibrittle fracture in concrete", Eng. Frac. Mech., 72(3), February, 387-411. https://doi.org/10.1016/j.engfracmech.2004.03.012
- Bazant, Z. P., Kazemi, M. T., Hasegawa, T., Mazars, J. (1991), "Size effect in Brazilian split-cylinder tests: measurements and fracture analysis", ACI Materials J., 88(3), 325-332.
- Beddow, J. K., and Meloy, T. (1980), "Testing and characterization of powders and fine particles", London; Heyden.
- Bolzon, G., Maier, G. and Tin-Loi, F. (1997), "On multiplicity of solutions in quasi-brittle fracture computations", Computational Mechanics, 19, 511-516. https://doi.org/10.1007/s004660050201
- Bui, T. T. and Attard, M. M. (2004), "Numerical simulation of the Brazilian test", in ACMSM 18, Development in Mechanics of Structures and Materials, Deeks, A. J. and Hao, H. Eds., Balkema, Perth, Australia, 197-203.
- Carneiro, F. L. L. B., and Barcellos, A. (1953), "Concrete tensile strength", Int. Assoc. of Testing and Res. Laboratories for Materials and Structures. Bull. No. 13.
- De Schutter, G. and Taerwe, L. (1993), "Random particle model for concrete based on Delaunay triangulation", Material Structures, 26, 67-73. https://doi.org/10.1007/BF02472853
- Jenq, Y. S. and Shah, S. P. (1985), "Two parameter fracture model for concrete", J. Eng. Mech. ASCE, 111, 1227-1241. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:10(1227)
- Leite, J. P. B., Slowik, V., and Mihashi, H. (2004), "Computer simulation of fracture processes of concrete using mesolevel models of lattice structures", Cement Conc. Res., 34, 1025-1033. https://doi.org/10.1016/j.cemconres.2003.11.011
- Lemke, C. E. (1965), "Bimatrix equilibrium points and mathematical programming", Management Science, 11, 681-689. https://doi.org/10.1287/mnsc.11.7.681
- Lilliu, G. and Van Mier, J. G. M. (1999), "Analysis of crack growth in the Brazilian test", Construction Materials: Theory and Application, H. W. Reinhardt Birthday Commemorate Volume, 123-137.
- Lilliu, G., Van Mier, J. G. M, and Van Vliet, M. R. A. (1999), "Analysis of crack growth of the Brazilian test: experiments and lattice analysis", Proceedings ICM8, 1, 273-278.
- Maier, G. (1970), "A matrix structural theory of piecewise-linear elastoplasticity with interacting yield planes", Meccanica, 5, 54-66. https://doi.org/10.1007/BF02133524
- RILEM Draft Recommendation (1985), "50-FMC Commitee fracture mechanics", Materials and Structures, 18 (106), 285-290. https://doi.org/10.1007/BF02472917
- Roelftra, P. E., Sadouli, H., and Wittmann, F. H. (1985), "Numerical concrete", Material Structures (RILEM), 18, 327. https://doi.org/10.1007/BF02472402
- Sadouki, H. and Wittmann, F. H. (2000), "Modeling of micro cracking induced by drying and endogenuos shrinkage in cement composites", International Conference on Advanced Materials, Their Processes and Applications, Munich, Germany, Werkstoffwoche-Partnerschaft GbR, Frankfurt, Germany.
- Schlangen, E. (1993), "Experimental and numerical analysis of fracture process in concrete", Heron, 38.
- Schlangen, E. (1995), "Computational aspects of fracture simulations with lattice models", in Proceedings FraMCoS-2, Wittmann, F. Eds., AEDIFICATIO Publishers, Freiburg, 913.
- Schlangen, E. and Van Mier, J. G. M. (1992). "Simple lattice model for numerical simulation of fracture of concrete materials and structures", Material Structures, 25, 534-542. https://doi.org/10.1007/BF02472449
- Schlangen, E. and Van Mier, J. G. M. (1992), "Experimental and numerical analysis of micromechanisms of fracture of cement-based composites", Cement Conc. Compo., 14, 105. https://doi.org/10.1016/0958-9465(92)90004-F
- Van Mier, J. G. M., Schlangen, E., and Vervuurt, A. (1996), "Tensile cracking in concrete and sandstone: Part 2. Effect of boundary rotations", Material Constructions, 29, 87-96.
- Van Mier, J. G. M. (1997), Fracture Processes of Concrete: Assessment of Material Parameters for Fracture Models, CRC Press, Boca Raton.
- Vervuurt, A. (1997), "Interface Fracture in Concrete", PhD thesis, Delft University of Technology, The Netherlands.
- Vonk, R. A. (1992), "Softening of Concrete Loaded in Compression", PhD thesis, Eindhoven University of Technology, The Netherlands.
- Walraven, J. C. (1980), "Aggregate interlock: a theoretical and experimental analysis", PhD thesis, Delft University of Technology, The Netherlands.
- Wang, Z. M., Kwan, A. K. H., and Chan, H. C. (1999), "Mesoscopic study of concrete I: Generation of random aggregate structure and finite element mes", Comput. Struct., 70, 533-544. https://doi.org/10.1016/S0045-7949(98)00177-1
- Wittmann, F. H., Roelfstra, P. E., and Sadouki, H. (1984), "Simulation and analysis of composite structures", Material Science and Engineering, 239-248.
- Wright, P. J. F. (1955), "Comments on an indirect tensile test on concrete cylinders", Mag. Conc. Res., 7(20), 87-96. https://doi.org/10.1680/macr.1955.7.20.87
- Zaitsev, Y. B. and Wittmann, F. H. (1981), "Simulation of crack propagation and failure of concrete", Materials Constructions, 14, 357-365. https://doi.org/10.1007/BF02478729
Cited by
- Crack propagation due to time-dependent creep in quasi-brittle materials under sustained loading vol.197, pp.21-24, 2008, https://doi.org/10.1016/j.cma.2007.12.005