DOI QR코드

DOI QR Code

Simulation of fracture in plain concrete modeled as a composite material

  • Bui, Thanh T. (School of Civil & Environmental Engineering, University of New South Wales) ;
  • Attard, Mario M. (School of Civil & Environmental Engineering, University of New South Wales)
  • Received : 2005.10.20
  • Accepted : 2005.12.08
  • Published : 2005.12.25

Abstract

A composite model is used to represent the heterogeneity of plain concrete consisting of coarse aggregates, mortar matrix and the mortar-aggregate interface. The composite elements of plain concrete are modeled using triangular finite element units which have six interface nodes along the sides. Fracture is captured through a constitutive single branch softening-fracture law at the interface nodes, which bounds the elastic domain inside each triangular unit. The inelastic displacement at an interface node represents the crack opening or sliding displacement and is conjugate to the internodal force. The path-dependent softening behaviour is developed within a quasi-prescribed displacement control formulation. The crack profile is restricted to the interface boundaries of the defined mesh. No re-meshing is carried out. Solutions to the rate formulation are obtained using a mathematical programming procedure in the form of a linear complementary problem. An event by event solution strategy is adopted to eliminate solutions with simultaneous formation of softening zones in symmetric problems. The composite plain concrete model is compared to experimental results for the tensile crack growth in a Brazilian test and three-point bending tests on different sized specimens. The model is also used to simulate wedge-type shear-compression failure directly under the loading platen of a Brazilian test.

Keywords

References

  1. Akazawa, T. (1953), "Tension test method for concrete", Int. Assoc. of Testing and Research Laboratories for Materials and Structures, Bull. No. 16.
  2. Attard, M.M. and Tin-Loi, L. (2005), "Numerical simulation of quasibrittle fracture in concrete", Eng. Frac. Mech., 72(3), February, 387-411. https://doi.org/10.1016/j.engfracmech.2004.03.012
  3. Bazant, Z. P., Kazemi, M. T., Hasegawa, T., Mazars, J. (1991), "Size effect in Brazilian split-cylinder tests: measurements and fracture analysis", ACI Materials J., 88(3), 325-332.
  4. Beddow, J. K., and Meloy, T. (1980), "Testing and characterization of powders and fine particles", London; Heyden.
  5. Bolzon, G., Maier, G. and Tin-Loi, F. (1997), "On multiplicity of solutions in quasi-brittle fracture computations", Computational Mechanics, 19, 511-516. https://doi.org/10.1007/s004660050201
  6. Bui, T. T. and Attard, M. M. (2004), "Numerical simulation of the Brazilian test", in ACMSM 18, Development in Mechanics of Structures and Materials, Deeks, A. J. and Hao, H. Eds., Balkema, Perth, Australia, 197-203.
  7. Carneiro, F. L. L. B., and Barcellos, A. (1953), "Concrete tensile strength", Int. Assoc. of Testing and Res. Laboratories for Materials and Structures. Bull. No. 13.
  8. De Schutter, G. and Taerwe, L. (1993), "Random particle model for concrete based on Delaunay triangulation", Material Structures, 26, 67-73. https://doi.org/10.1007/BF02472853
  9. Jenq, Y. S. and Shah, S. P. (1985), "Two parameter fracture model for concrete", J. Eng. Mech. ASCE, 111, 1227-1241. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:10(1227)
  10. Leite, J. P. B., Slowik, V., and Mihashi, H. (2004), "Computer simulation of fracture processes of concrete using mesolevel models of lattice structures", Cement Conc. Res., 34, 1025-1033. https://doi.org/10.1016/j.cemconres.2003.11.011
  11. Lemke, C. E. (1965), "Bimatrix equilibrium points and mathematical programming", Management Science, 11, 681-689. https://doi.org/10.1287/mnsc.11.7.681
  12. Lilliu, G. and Van Mier, J. G. M. (1999), "Analysis of crack growth in the Brazilian test", Construction Materials: Theory and Application, H. W. Reinhardt Birthday Commemorate Volume, 123-137.
  13. Lilliu, G., Van Mier, J. G. M, and Van Vliet, M. R. A. (1999), "Analysis of crack growth of the Brazilian test: experiments and lattice analysis", Proceedings ICM8, 1, 273-278.
  14. Maier, G. (1970), "A matrix structural theory of piecewise-linear elastoplasticity with interacting yield planes", Meccanica, 5, 54-66. https://doi.org/10.1007/BF02133524
  15. RILEM Draft Recommendation (1985), "50-FMC Commitee fracture mechanics", Materials and Structures, 18 (106), 285-290. https://doi.org/10.1007/BF02472917
  16. Roelftra, P. E., Sadouli, H., and Wittmann, F. H. (1985), "Numerical concrete", Material Structures (RILEM), 18, 327. https://doi.org/10.1007/BF02472402
  17. Sadouki, H. and Wittmann, F. H. (2000), "Modeling of micro cracking induced by drying and endogenuos shrinkage in cement composites", International Conference on Advanced Materials, Their Processes and Applications, Munich, Germany, Werkstoffwoche-Partnerschaft GbR, Frankfurt, Germany.
  18. Schlangen, E. (1993), "Experimental and numerical analysis of fracture process in concrete", Heron, 38.
  19. Schlangen, E. (1995), "Computational aspects of fracture simulations with lattice models", in Proceedings FraMCoS-2, Wittmann, F. Eds., AEDIFICATIO Publishers, Freiburg, 913.
  20. Schlangen, E. and Van Mier, J. G. M. (1992). "Simple lattice model for numerical simulation of fracture of concrete materials and structures", Material Structures, 25, 534-542. https://doi.org/10.1007/BF02472449
  21. Schlangen, E. and Van Mier, J. G. M. (1992), "Experimental and numerical analysis of micromechanisms of fracture of cement-based composites", Cement Conc. Compo., 14, 105. https://doi.org/10.1016/0958-9465(92)90004-F
  22. Van Mier, J. G. M., Schlangen, E., and Vervuurt, A. (1996), "Tensile cracking in concrete and sandstone: Part 2. Effect of boundary rotations", Material Constructions, 29, 87-96.
  23. Van Mier, J. G. M. (1997), Fracture Processes of Concrete: Assessment of Material Parameters for Fracture Models, CRC Press, Boca Raton.
  24. Vervuurt, A. (1997), "Interface Fracture in Concrete", PhD thesis, Delft University of Technology, The Netherlands.
  25. Vonk, R. A. (1992), "Softening of Concrete Loaded in Compression", PhD thesis, Eindhoven University of Technology, The Netherlands.
  26. Walraven, J. C. (1980), "Aggregate interlock: a theoretical and experimental analysis", PhD thesis, Delft University of Technology, The Netherlands.
  27. Wang, Z. M., Kwan, A. K. H., and Chan, H. C. (1999), "Mesoscopic study of concrete I: Generation of random aggregate structure and finite element mes", Comput. Struct., 70, 533-544. https://doi.org/10.1016/S0045-7949(98)00177-1
  28. Wittmann, F. H., Roelfstra, P. E., and Sadouki, H. (1984), "Simulation and analysis of composite structures", Material Science and Engineering, 239-248.
  29. Wright, P. J. F. (1955), "Comments on an indirect tensile test on concrete cylinders", Mag. Conc. Res., 7(20), 87-96. https://doi.org/10.1680/macr.1955.7.20.87
  30. Zaitsev, Y. B. and Wittmann, F. H. (1981), "Simulation of crack propagation and failure of concrete", Materials Constructions, 14, 357-365. https://doi.org/10.1007/BF02478729

Cited by

  1. Crack propagation due to time-dependent creep in quasi-brittle materials under sustained loading vol.197, pp.21-24, 2008, https://doi.org/10.1016/j.cma.2007.12.005