References
- Belytschko, T. and Hughes, T. J. R. (1983), Computational Methods for Transient Analysis, North-Holland, Amsterdam.
- Castillo, C. and Durrani, A. J. (1990), "Effect of transient high temperature on high-strength concrete", ACI Mater. J.U, 87(1), 47-53.
- Heinrich, J. C. and Pepper, D.W. (1999), Intermediate Finite Element Method: Fluid Flow and Heat Transfer Applications, Taylor & Francis.
- Lewis, R. W., Morgan, K., Thomas, H. R., and Seetharamu, K. N. (1996), The Finite Element Method in Heat Transfer Analysis, Wiley.
- Lie, T. T. and Kodur, V. K. R. (1996), "Thermal and mechanical properties of steel-fiber-reinforced concrete at elevated temperatures", Canadian. J. Civ. Eng., 23(2), 511-517. https://doi.org/10.1139/l96-055
- Ozisik, M. N. (1994), Finite Difference in Heat Transfer, CRC Press, USA.
- Shin, K. Y., Kim, S. B., Kim, J. H., Chung, M., and Jung, P. S. (2002), "Thermo-physical properties and transient heat transfer of concrete at elevated temperatures", Nucl. Eng. Des.U, 212(2), 233-241. https://doi.org/10.1016/S0029-5493(01)00487-3
- Vecchio, F. J. and Collins, M. P. (1986), "The modified compression-field theory for reinforced concrete elements subjected to shear", UJ. Concrete Inst.U, 83(2), 219-231.
- Vecchio, F. J. (1987), "Nonlinear analysis of reinforced concrete frames subjected to thermal and mechanical loads", ACI Struct. J., 84(6), 492-501.
- Vecchio, F. J. (1990), "Reinforced concrete membrane element formulation", UASCE J. Struct. Eng., 116(3), 730-750. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:3(730)
- Vecchio, F. J. and Sato, J. A. (1990), "Thermal gradient effects in reinforced concrete frame structures", ACI Struct. J., 87(3), 262-275.
- Vecchio, F. J. (2000) "Disturbed stress field model for reinforced concrete: Formulation", U ASCE J. Struct. Eng.U, 126(8), 1070-1077. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1070)
- Zhou, C. E. and Vecchio, F. J. "Closed-form stiffness matrix for the four-node quadrilateral element with a fullypopulated material stiffness", ASCE J. Eng. Mech.U, submitted.
- Zhu, X. K. and Chao, Y. J. (2002), "Effects of temperature-dependent material properties on welding simulation", Comput. Struct.U, 80(11), 967-976. https://doi.org/10.1016/S0045-7949(02)00040-8
- Zienkiewicz, O. C. and Taylor, R. L. (2000), The Finite Element Method, 5th edition, John Wiley & Sons.
Cited by
- Implementation of the modified compression field theory in a tangent stiffness-based finite element formulation vol.7, pp.4, 2007, https://doi.org/10.12989/scs.2007.7.4.263
- Full-scale test of the hydration heat and the curing method of the wet joints of a precast segmental pier of a bridge vol.21, pp.3, 2017, https://doi.org/10.1080/19648189.2015.1119063
- Performance of RC T-Beams Externally Strengthened with CFRP Laminates under Elevated Temperatures vol.5, pp.1, 2014, https://doi.org/10.1260/2040-2317.5.1.1
- Modeling of insulated CFRP-strengthened reinforced concrete T-beam exposed to fire vol.31, pp.12, 2009, https://doi.org/10.1016/j.engstruct.2009.08.008
- Thermal-stress analysis of RC beams reinforced with GFRP bars vol.43, pp.5, 2012, https://doi.org/10.1016/j.compositesb.2012.03.004
- Thermal-Stress Finite Element Analysis of CFRP Strengthened Concrete Beam Exposed to Top Surface Fire Loading vol.18, pp.3, 2011, https://doi.org/10.1080/15376494.2010.499019
- The mathematical modelling of corrosion in hot dip galvanized steel reinforced concrete vol.2, pp.1, 2011, https://doi.org/10.1556/IRASE.2.2011.1.1
- Numerical analysis on the behaviour of reinforced concrete frame structures in fire vol.21, pp.6, 2005, https://doi.org/10.12989/cac.2018.21.6.637
- Experimental and numerical investigation on the behavior of hybrid concrete beams reinforced with GFRP bars after exposure to elevated temperature vol.28, pp.None, 2020, https://doi.org/10.1016/j.istruc.2020.08.079
- Member and structural fragility of reinforced concrete structure under fire vol.11, pp.4, 2020, https://doi.org/10.1108/jsfe-02-2019-0015