References
- Babuska, I. and Chatzipantelidis, P. (2002), 'On solving elliptic stochastic partial differential equations', Comput. Meth. Appl. Mech. Engrg., 191(37-38), 4039-4122
- Choi, C.K. and Noh, H.C. (1993), 'Stochastic finite element analysis by using quadrilateral elements', J. of the KSCE, 13(5), 29-37
- Choi, C.K. and Noh, H.C. (1996a), 'Stochastic finite element analysis of plate structures by weighted integral method', Struct. Eng. Mech., 4(6), 703-715 https://doi.org/10.12989/sem.1996.4.6.703
- Choi, C.K. and Noh, H.C. (1996b), 'Stochastic finite element analysis with direct integration method', 4th Int. Conf. on Civil Eng., Manila, Philippines, Nov. 6-8, 522-531
- Choi, C.K. and Noh, H.C. (2000), 'Weighted integral SFEM including higher order terms', J. Engrg. Mech., ASCE, 126(8), 859-866 https://doi.org/10.1061/(ASCE)0733-9399(2000)126:8(859)
- Deodatis, G and Shinozuka, M. (1989), 'Bounds on response variability of stochastic systems', J. Engrg. Mech., ASCE, 115(11),2543-2563 https://doi.org/10.1061/(ASCE)0733-9399(1989)115:11(2543)
- Deodatis, G., Wall, W. and Shinozuka, M. (1991), 'Analysis of two-dimensional stochastic systems by the weighted integral method', In Spanos, P.D. and Brebbia, C.A., editors, 'Computational Stochastic Mechanics', 395-406
- Deodatis, G. (1996), 'Non-stationary stochastic vector processes: seismic ground motion applications', Probab. Engrg. Mech., 11, 149-168 https://doi.org/10.1016/0266-8920(96)00007-0
- Deodatis, G, Graham-Brady, L. and Micaletti, R. (2003), 'A hierarchy of upper bounds on the response of stochastic systems with large variation of their properties: random variable case', Probab. Engrg. Mech., 18, 349-363 https://doi.org/10.1016/j.probengmech.2003.08.001
- Deodatis, G., Graham-Brady, L. and Micaletti, R. (2003), 'A hierarchy of upper bounds on the response of stochastic systems with large variation of their properties: random field case', Probab. Engrg. Mech., 18, 365-375 https://doi.org/10.1016/j.probengmech.2003.08.002
- Falsone, G. and Impollonia, N. (2002), 'A new approach for the stochastic analysis of finite element modeled structures with uncertain parameters', Comput. Meth. Appl. Mech. Engrg., 191,5067-5085 https://doi.org/10.1016/S0045-7825(02)00437-1
- Frauenfelder, P., Schwab, C. and Todor, R.A. (2005), 'Finite elements for elliptic problems with stochastic coefficients', Comput. Meth. Appl. Mech. Engrg., 194(2-5), 205-228 https://doi.org/10.1016/j.cma.2004.04.008
- Graham, L. and Deodatis, G (1998), 'Variability response functions for stochastic plate bending problems', Structural Safety, 20, 167-188 https://doi.org/10.1016/S0167-4730(98)00006-X
- Graham, L.L. and Deodatis, G. (2001), 'Response and eigenvalue analysis of stochastic finite element systems with multiple correlated material and geometric properties', Probab. Engrg. Mech., 16(1), 11-29 https://doi.org/10.1016/S0266-8920(00)00003-5
- Kaminski, M. (2001), 'Stochastic finite element method homogenization of heat conduction problem in fiber composites', Struct. Eng. Mech., 11(4), 373-392 https://doi.org/10.12989/sem.2001.11.4.373
- Liu, W'K., Belytschko, T. and Mani, A. (1986), 'Probabilistic finite elements for nonlinear structural dynamic', Comput. Meth. Appl. Mech. Engrg., 56, 91-81 https://doi.org/10.1016/0045-7825(86)90138-6
- Lin, Y.K. (1967), Probabilistic Theory of Structural Dynamics, McGraw-Hill, Inc., 68
- Manjuprasad, M., Gopalakrishnan, S. and Balaji Rao, K. (2003), 'Stochastic finite element based seismic analysis of framed structures with open-storey', Struct. Eng. Mech., 15(4),381-394 https://doi.org/10.12989/sem.2003.15.4.381
- Noh, H.C. (2004), 'A formulation for stochastic finite element analysis of plate structures with uncertain Poisson's ratio', Comput. Meth. Appl. Mech. Engrg., 193(45-47),4857-4873 https://doi.org/10.1016/j.cma.2004.05.007
- Papadopoulos, V., Deodatis, G. and Papadrakakis, M. (2005), 'Flexibility-based upper bounds on the response variability of simple beams', Comput. Meth. Appl. Meeh. Engrg., 194(12-16),1385-1404 https://doi.org/10.1016/j.cma.2004.06.040
- Popescu, R., Deodatis, G. and Prevost, J.H. (1998), 'Simulation of homogeneous nonGaussian stochastic vector fields', Probab. Engrg. Mech., 13(1), 1-13 https://doi.org/10.1016/S0266-8920(97)00001-5
- Sarkani, S., Lutes, L.D., Jin, S. and Chan, C. (1999), 'Stochastic analysis of seismic structural response with soil-structure interaction', Struet. Eng. Mech., 8(1), 53-72 https://doi.org/10.12989/sem.1999.8.1.053
- Shinozuka, M. (1972), 'Monte Carlo solution of structural dynamics', Comput. Struet., 2, 855-874 https://doi.org/10.1016/0045-7949(72)90043-0
- Shinozuka, M. and Deodatis, G. (1988), 'Response variability of stochastic finite element systems', J. Engrg. Mech., ASCE, 114(3),499-519 https://doi.org/10.1061/(ASCE)0733-9399(1988)114:3(499)
- Stefanou, G and Papadrakakis, M. (2004), 'Stochastic finite element analysis of shells with combined random material and geometric properties', Comput. Meth. Appl. Mech. Engrg., 193(1-2), 139-160 https://doi.org/10.1016/j.cma.2003.09.006
- Timoshenko, S.P. and Krieger, S.W. (1959), Theory of Plates and Shells, McGraw-Hili, Inc
- To, C.S.W (1986), 'The stochastic central difference method in structural dynamics', Comput. Struct., 23(6), 813-818 https://doi.org/10.1016/0045-7949(86)90250-6
- Yamazaki, F. and Shinozuka, M. (1990), 'Simulation of stochastic fields by statistical preconditioning', J. Engrg. Mech., ASCE, 116(2), 268-287 https://doi.org/10.1061/(ASCE)0733-9399(1990)116:2(268)
- Zhu, W.Q., Ren, Y.J. and Wu, W.Q. (1992), 'Stochastic FEM based on local averages of random vector fields', J. Engrg. Mech., ASCE, 118(3), 496-511 https://doi.org/10.1061/(ASCE)0733-9399(1992)118:3(496)
Cited by
- Solution of randomly excited stochastic differential equations with stochastic operator using spectral stochastic finite element method (SSFEM) vol.28, pp.2, 2008, https://doi.org/10.12989/sem.2008.28.2.129
- Behavior of high-strength fiber reinforced concrete plates under in-plane and transverse loads vol.31, pp.4, 2009, https://doi.org/10.12989/sem.2009.31.4.371