DOI QR코드

DOI QR Code

Synthesis and Characterization of CNTs/Metal/Al2O3 Nanocomposite Powders by Thermal CVD

열 CVD법에 의한 CNTs/Metal/Al2O3 나노복합분말의 합성 및 특성

  • Choa Yong-Ho (Department of Fine Chemical Engineering, Hanyang University) ;
  • Yoo Seung-Hwa (Department of Fine Chemical Engineering, Hanyang University) ;
  • Yang Jae-Kyo (Department of Fine Chemical Engineering, Hanyang University) ;
  • Oh Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Technology) ;
  • Kang Sung-Goon (Division of Materials Science and Engineering, Hanyang University)
  • 좌용호 (한양대학교 정밀화학공학과) ;
  • 유승화 (한양대학교 정밀화학공학과) ;
  • 양재교 (한양대학교 정밀화학공학과) ;
  • 오승탁 (서울산업대학교 신소재공학과) ;
  • 강성군 (한양대학교 신소재공학과)
  • Published : 2005.04.01

Abstract

An optimum route to synthesize $Al_2O_3$-based composite powders with homogeneous dispersion of carbon nanotubes (CNTs) was investigated. CNTs/Metal/$Al_2O_3$ nanocomposite powders were fabricated by thermal chemical vapor deposition of $C_2H_2$ gas over metal/$Al_2O_3$ nanocomposite catalyst prepared by selective reduction of metal oxide/$Al_2O_3$ powders. The FT-Raman spectroscopy analysis revealed that the CNTs have single- and multi-walled structure. The CNTs with the diameter of 25-43 nm were homogeneously distributed in the metal/$Al_2O_3$ powders, and their characteristics were strongly affected by a kind of metal catalyst and catalyst size. The experimental results show that the composite powder with required size and dispersion of CNTs can be realized by control of synthesis condition.

Keywords

References

  1. S. Iijima: Nature, 354 (1991) 56 https://doi.org/10.1038/354056a0
  2. K.-K. Cho, H.-J. Ahn, K.-W. Kim, I.-S. Ahn : J. Korean Powder Metallurgy Institute, 9 (2002) 463 https://doi.org/10.4150/KPMI.2002.9.6.463
  3. A. Dufresne, M. Paillet, J. L. Putaux, R. Canet, F. Carmona, P. Delhaes and S. Cui: J. Mater. Sci., 37 (2002) 3915 https://doi.org/10.1023/A:1019659624567
  4. C. L. Xu, B.Q. Wei, R. Z. Ma, J. Liang, X.K. Ma and D. H. Wu: Carbon, 37 (1999) 855 https://doi.org/10.1016/S0008-6223(98)00285-1
  5. R. Z. Ma, J. Wu, B. Q. Wei, J. Liang and D. H. Wu: J. Mater. Sci., 33 (1998) 5243 https://doi.org/10.1023/A:1004492106337
  6. G. D. Zhan, J. D. Kuntz, J. Wan and A. K. Mukherjee: Nature-Materials, 2 (2003) 38 https://doi.org/10.1038/nmat793
  7. E. Flahaut, A. Peigney, Ch. Laurent, Ch. Marliere, F. Chastel and A. Rousset, Acta Mater., 48 (2000) 3803 https://doi.org/10.1016/S1359-6454(00)00147-6
  8. Y.-H. Choa, B.-H. Kim, Y. K. Jeong, K.-W. Chae, T. Nakayama, T. Kusunose, T. Sekino and K. Niihara : J. Korean Powder Metallurgy Institute, 8 (2001) 151
  9. Q. Jiang, M. Z. Qu, G. M. Zhou, B. L. Zhang and Z. L. Yu: Materials Letters, 57 (2002) 988 https://doi.org/10.1016/S0167-577X(02)00911-4
  10. A. Cao, C. Xu, J. Liang, D. Wu and B. Wei: Chemical Physics Letters, 344 (2001) 13 https://doi.org/10.1016/S0009-2614(01)00671-6
  11. S. H. Yoo, H .J. Wang, S. T. Oh, S. G. Kang and Y. H. Choa: Key Engineering Materials, (2005) in-print
  12. P. J. F. Harris: Intern. Mater. Reviews, 40 (1995) 97 https://doi.org/10.1179/imr.1995.40.3.97
  13. P. J. F. Harris, E. D. Boyes and J. A. Cains: J. Catalyst, 82 (1983) 127 https://doi.org/10.1016/0021-9517(83)90124-0
  14. R. I. Masel: 'Principles of adsorption and reaction on solid surface', John Willey & Sons, Inc, London (1996)
  15. W. Qian, T. Liu, F. Wei and H. Yuan: Carbon, 41 (2003) 1851 https://doi.org/10.1016/S0008-6223(03)00106-4