Thermal Transitions of the Drawn Film of a Nylon 6/Layered Silicate Nanocomposite

  • Park Soo-Young (Department of Polymer Science, Kyungpook National University) ;
  • Cho Yang-Hwan (Department of Polymer Science, Kyungpook National University)
  • Published : 2005.04.01

Abstract

The thermal transitions of a nylon 6/layered silicate nanocomposite were studied by differential scanning calorimetry and in-situ synchrotron X-ray diffraction. The drawn film of the nylon 6/layered silicate nanocomposite typically showed three endotherms in the DSC thermogram; a very broad endotherm at $\sim120^{\circ}C(T_{1})$, a double-melting endotherm at $\sim215^{\circ}C(T_{2})$, and a high temperature endotherm at $\sim240^{\circ}C(T_{3})$. The drawn film of the nylon 6/ layered silicate nanocomposite was comprised of a mixture of the $\alpha and \gamma$ forms, with $the \alpha form$ being generated by drawing the pressed film having $the \gamma form$. The melting and crystallization of the crystals were observed at the above thermal transitions during the heating experiment performed at the Pohang X-ray synchrotron radiation source (4C2). The newly generated form was meta-stable and melted $at {\sim}T_{1}$. The double-melting $at {\sim}T_{2}$ was due to the exothermic crystallization of $the \alpha form$ during the main endothermic melting of $the \gamma form$. $The \alpha form$ crystallized $at {\sim}T_{2}$ and melted $at {\sim}T_{3}$.

Keywords

References

  1. A. Okada and A. Usuki, Polym. Prepr. (Am. Chem. Sco., Div. Polym. Chem.), 28, 447 (1987)
  2. Kojima, Y. Usuki, A. Kawasumi, M. Okada, O. Fukushima, Y. Kurachi, and T. Kamigaito, O. J. Mater. Res., 8, 1185 (1993) https://doi.org/10.1557/JMR.1993.1185
  3. L. Liu, Z. Qi, and X. Zhu, J. Appl. Polym. Sci., 71, 1133 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990207)71:6<999::AID-APP15>3.0.CO;2-C
  4. O. T. Hseih, T. B. Lloyd, and S. K. Rutledge, Int. SAMPE Symp. Proc., Conf. Proc. of 1998 Meeting (Part 2 of 2), 43, 1170 (1998)
  5. R. A. Vaia, G Price, P. N. Ruth, H. T. Nguyen, and Lichtenhan. J. Appl. Clay Sci., 15, 67 (1999)
  6. A. Okada, M. Kawasumi, A. Usuki, Y. Kojima, T. Kurauchi, and O. Kamigaito, Mater. Res. Soc. Symp. Proc., 171, 45 (1990)
  7. Y. Ke, C. Long, and Z. Qi, J. Appl. Polym. Sci., 71, 1139 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990207)71:6<999::AID-APP15>3.0.CO;2-C
  8. Y. Kojima, A. Okada, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1185 (1993) https://doi.org/10.1557/JMR.1993.1185
  9. P. B. Messersmith and E. P. Giannelis, J. Polym. Sci.; Part A: Polym. Chem., 33, 1047 (1995) https://doi.org/10.1002/pola.1995.080330707
  10. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, J. Appl. Polym. Sci., 49, 1259 (1993) https://doi.org/10.1002/app.1993.070490715
  11. R. Krishnamoorti and E. P. Giannelis, Macromolecules, 30, 4097 (1997) https://doi.org/10.1021/ma960550a
  12. P. Maiti, P. H. Nam, M. Okamoto, and T. Kotaka, Polym. Eng. Sci., 42, 1864 (2002) https://doi.org/10.1002/pen.11079
  13. C. R. Tseng, S. C. Wu, J. J. Wu, and F. C Chang, J. Appl. Polym. Sci., 86, 2492 (2002) https://doi.org/10.1002/app.11020
  14. K. Strawhecker and E. Manias, Chem. Mater., 12, 2943 (2000) https://doi.org/10.1021/cm000506g
  15. B. Han, G Ji, S. Wu, and J. Shen, Eur. Polym. J., 39, 1641 (2003) https://doi.org/10.1016/S0014-3057(02)00291-4
  16. Z. Z. Yu, M. Yang, Q. Zhang, C. Zhao, and Y. W. Mai, J. Polym. Sci.; Part B: Polym. Phys., 41, 1234 (2003) https://doi.org/10.1002/polb.10480
  17. X. Liu, Q. Wu, and L. A. Berglund, Polymer, 43, 4967 (2002) https://doi.org/10.1016/S0032-3861(02)00331-2
  18. Z. Liu, P. Zhou, and D. Yan, J. Appl. Polym. Sci., 91, 1834 (2004) https://doi.org/10.1002/app.13336
  19. G. Zhang and D. Yan, J. Appl. Polym. Sci., 88, 2181 (2003) https://doi.org/10.1002/app.11879
  20. L. Y. Wang, S. Q. He, L. C. Hao, C. S. Zhu, and Z. N. Qi, GaoJenzi Cailiao Kexue Yu Gongcheng, 18, 62 (2002)
  21. D. M. Lincoln, R. A. Vaia, Z. G. Wang, B. S. Hsiao, and R. Krishnamoorti, Polymer, 42, 9975 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  22. X. Liu, Q. Wu, L. A. Berglund, and Z. Qi, Macromol. Mater. Eng., 287, 515 (2002) https://doi.org/10.1002/1439-2054(20020801)287:8<515::AID-MAME515>3.0.CO;2-B
  23. T. M. Wu, E. C. Chen, and C. S. Liao, Polym. Eng. Sci., 42, 1141 (2002) https://doi.org/10.1002/pen.11018
  24. P. H. Nam, P. Maiti, M. Okamoto, T. Kotaka, N. Hasegawa, and A. Usuki, Polymer, 42, 9633 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  25. E. Devaux, S. Bourbigot, and A. E. Achari, J. Appl. Polym. Sci., 86, 2416 (2002) https://doi.org/10.1002/app.10920
  26. V. Krikorian, M. Kurian, M. E. Galvin, A. P. Nowak, T. J. Deming, and D. J. Pochan, J. Polym. Sci.; Part B: Polym. Phys., 40, 2579 (2002) https://doi.org/10.1002/polb.10315
  27. C. M. Carter, Annu. Tech. Conf.-Soc. Plast. Eng., 3, 3210 (2001)
  28. T. M. Wu and J. Y. Wu, J. Macromol. Sci. Phys., 41, 17 (2002) https://doi.org/10.1081/MB-120002343
  29. T. D. Fornes and D. R. Paul, Polymer, 44, 3945 (2003) https://doi.org/10.1016/S0032-3861(03)00344-6
  30. H. D. Wu, C. R. Tseng, and F. C. Chang, Macromolecules, 34, 2992 (2001) https://doi.org/10.1021/ma002404h
  31. Q. Wu, X. Liu, and L. A. Berglund, Macromol. Rapid Commun., 22, 1438 (2001) https://doi.org/10.1002/1521-3927(20010101)22:1<1::AID-MARC1>3.0.CO;2-T
  32. R. Brill, Z Physik Chem. B, 53, 61 (1943)
  33. R. Holmes, D. W. Bunn, and D. L. Smith, J. Polym. Sci., 17, 619 (1955)
  34. J. Francisco, R. Medellin, C. Burger, B. S. Hsiao, B. Chu, R. A. Vaia, and S. Phillips, Polymer, 42, 9015 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  35. H. Arimoto, M. Ishibashi, M. Hirai, and Y. Chatani, J. Polym. Sci., 3, 317 (1965) https://doi.org/10.1002/pol.1965.110031116
  36. R. Brill, J. Prakt. Chem., 161, 49 (1942) https://doi.org/10.1002/prac.19421610104
  37. C. Ramesh, Macromolecules, 32, 3721 (1999) https://doi.org/10.1021/ma981284z
  38. H. J. Biangardi, J. Macromol. Sci., Phys. B, 29, 139 (1990) https://doi.org/10.1080/00222349008245770
  39. N. S. Murthy, S. A. Curran, S. M. Aharoni, and H. Minor, Macromolecules, 24, 3215 (1991) https://doi.org/10.1021/ma00011a027
  40. M. Todoki and T. Kawaguchi, J. Polym. Sci.; Part B: Polym. Phys., 15, 1067 (1977)
  41. T. Itoh, H. Miyaji, and K. Asai, Jap. J. Appl. Phys., 14, 206 (1975) https://doi.org/10.1143/JJAP.14.206
  42. L. Liu, X. Zhu, and Z. Qi, GaoJenzi Xuebao, 3, 274 (1999)
  43. T. Wu and C. Liao, Macromol. Chem. Phys., 201, 2820 (2000) https://doi.org/10.1002/1521-3935(20001201)201:18<2820::AID-MACP2820>3.0.CO;2-4
  44. Z. Ergungor, M. Cakmak, and C. Batur, Macromol. Symp., 185, 259 (2002)
  45. S. Y. Park, Y. H. Cho, and R. A. Vaia, Macromolecules, 38, 1729 (2005) https://doi.org/10.1021/ma048258n
  46. Y. Kojima, T. Matsuoka, H. Takahashi, and T. Kurauchi, J. Appl. Polym. Sci., 51, 683 (1994) https://doi.org/10.1002/app.1994.070510413
  47. A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Kukushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1179 (1993) https://doi.org/10.1557/JMR.1993.1179
  48. J. Francisco, R. Medellin, B. S. Hsiao, B. Chu, and B. X. Pu, J. Macromol. Sci.; Part B: Physics, 42, 201 (2003) https://doi.org/10.1081/MB-120015759
  49. H. Arimoto, Kobunshi Kagaku, 19, 212 (1962) https://doi.org/10.1295/koron1944.19.212
  50. K. Miyasaka and K. Ishikawa, J. Polym. Sci.; Part A: Polym. Chem., 6, 1317 (1968)