Unstable Inverted Phases of Di- and Tri-block Copolymers on Solution-Casting Films

  • Sun Dachun (Department of Educational Technology Baicheng Normal College) ;
  • Huang Lei (Department of Polymer Science and Engineering, University of Science and Technology of China) ;
  • Liang Haojun (Department of Polymer Science and Engineering, University of Science and Technology of China)
  • Published : 2005.04.01

Abstract

A dynamic density functional theory is presented for the observation of the phase revolutions of a solution-casting film of di- and tri-block copolymers under solvent evaporation conditions. With the evaporation of the solvent, the inverted phases, the minor part of the component becomes the continuous phase at the higher solvent evaporation rate, as observed in this experiment. Further simulation revealed that these inverted phases are converted into the normal phase and the major part of the component becomes the continuous phase, implying that the inverted phases observed in this experiment are unstable.

Keywords

References

  1. F. S. Bates and G. H. Fredrickson, Annu. Rev. Phys. Chem., 41, 525 (1990) https://doi.org/10.1146/annurev.pc.41.100190.002521
  2. K. Mortensen, Curr. Opin. Colloid Inter. Sci., 3, 12 (1998) https://doi.org/10.1016/S1359-0294(98)80036-8
  3. C. Y. Wang and T. P. Lodge, Macromolecules, 35, 6997 (2002) https://doi.org/10.1021/ma011278u
  4. T. P. Lodge, 8. Pudil, and K. J. Hanley, Macromolecules, 35, 4707 (2002) https://doi.org/10.1021/ma011278u
  5. Y. Termonia, J. Polym. Sci. Polym. Phys., 40, 890 (2002) https://doi.org/10.1002/polb.10158
  6. S. Burke, H. W. Shen, and A. Eisenberg, Macromolecular Symposia, 175, 273 (2001) https://doi.org/10.1002/1521-3900(200110)175:1<1::AID-MASY1>3.0.CO;2-W
  7. M. Maskos and J. R. Harris, Macro. Rap. Comm., 22, 271 (2001) https://doi.org/10.1002/1521-3927(20010101)22:1<1::AID-MARC1>3.0.CO;2-T
  8. F. S. Bates and G. H. Fredrickson, Phys. Today, 52, 32 (1999)
  9. L. H. Radzilowski and S. I. Stupp, Macromolecules, 27, 7747 (1994) https://doi.org/10.1021/ma00104a033
  10. S. J. M. Yu, C. M. Soto, and D. A. Tirrell, J. Am. Chem. Soc., 122, 6552 (2000) https://doi.org/10.1021/ja000465p
  11. S. Ludwigs, A. Boker, A. Voronov, N. Rehse, R. Magerle, and G. Krausch, Nat. Mater., 2, 744 (2003) https://doi.org/10.1038/nmat778
  12. S. H. Kim, M. J. Misner, T. Xu, M. Kimura, and T. P. Russell, Adv. Mater., 16, 226 (2004) https://doi.org/10.1002/adma.200304906
  13. F. S. Bates, Science, 251, 898 (1991) https://doi.org/10.1126/science.251.4996.898
  14. G. Kim and M. Libera, Macromolecules, 31, 2569 (1998) https://doi.org/10.1021/ma971349i
  15. H. G. Jeon, S. D. Hudson, H. Ishida, and S. D. Smith, Macromolecules, 32, 1803 (1999) https://doi.org/10.1021/ma9816665
  16. Q. L. Zhang, O. K. C. Tsui, B. Y. Du, F. J. Zhang, T. Tang, and T. B. He, Macromolecules, 33, 9561 (2000) https://doi.org/10.1021/ma001161q
  17. H. Y. Huang, F. J. Zhang, Z. J. Hu, B. Y. Du, T. B. He, F. K. Lee, Y. J. Wang, and O. K. C. Tsui, Macromolecules, 36, 4084 (2003) https://doi.org/10.1021/ma0217581
  18. L. Huang, X. H. He, T. B. He, and H. J. Liang, J. Chem Phys., 119, 12479 (2003) https://doi.org/10.1063/1.1626637
  19. J. G. E. M. Fraaije, J. Chem. Phys., 99, 9202 (1993) https://doi.org/10.1063/1.465536
  20. J. G. E. M. Fraaije, B. A. C. Van Vlimmeren, N. M. Maurits, M. Postma, O. A. Evers, C. Hoffmann, and G. Goldbeck-Wood, J. Chem. Phys., 106, 4260 (1997) https://doi.org/10.1063/1.473129