References
- Amos, S., Martin, P. M., Polar, G. A., Parsons, S. J., and Hussaini, I. M., Phorbol 12-myristate 13-acetate induces epidermal growth factor receptor transactivation via protein kinase C{delta}/c-Src pathways in glioblastoma cells. J. Biol. Chem., 280, 7729-7738 (2005) https://doi.org/10.1074/jbc.M409056200
- Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D., and Julius, D., The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 389, 816-824 (1997) https://doi.org/10.1038/39807
- Caterina, M. J., Leffler, A., Malmberg, A. B., Martin, W. J., Trafton, J., Petersen-Zeitz, K. R., Koltzenburg, M., Basbaum, A. I., and and Julius, D., Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science, 288, 306-313 (2000) https://doi.org/10.1126/science.288.5464.306
- Cesare, P., Moriondo, A., Vellani, V., and McNaughton, P. A., Ion channels gated by heat. Proc. Natl. Acad. Sci. U.S.A., 96, 7658-63 (1999) https://doi.org/10.1073/pnas.96.14.7658
- Cesare, P. and McNaughton, P., A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc. Natl. Acad. Sci. U.S.A., 93, 15435-15439 (1996) https://doi.org/10.1073/pnas.93.26.15435
- Cheng, S. H., Rich, D. P., Marshall, J., Gregory, R. J., Welsh, M. J., and Smith, A. E., Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell, 66, 1027-1036 (1991) https://doi.org/10.1016/0092-8674(91)90446-6
- Chuang, H. H., Prescott, E. D., Kong, H., Shields, S., Jordt, S. E., Basbaum, A. I., Chao, M. V., and Julius, D., Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5) P2-mediated inhibition. Nature, 411, 957-962 (2001) https://doi.org/10.1038/35082088
- Cortright, D. N. and Szallasi, A., Biochemical pharmacology of the vanilloid receptor TRPV1. An update. Eur. J. Biochem., 271, 1814-1819 (2004) https://doi.org/10.1111/j.1432-1033.2004.04082.x
- Davies, S. P., Reddy, H., Caivano, M., and Cohen, P., Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J., 351 (part 1), 95-105 (2000) https://doi.org/10.1042/0264-6021:3510095
- Davis, J. B., Gray, J., Gunthorpe, M. J., Hatcher, J. P., Davey, P. T., Overend, P., Harries, M. H., Latcham, J., Clapham, C., Atkinson, K., Hughes, S. A., Rance, K., Grau, E., Harper, A. J., Pugh, P. L., Rogers, D. C., Bingham, S., Randall, A., and Sheardown, S. A., Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature, 405, 183-187 (2000) https://doi.org/10.1038/35012076
- De Petrocellis, L., Harrison, S., Bisogno, T., Tognetto, M., Brandi, I., Smith, G. D., Creminon, C., Davis, J. B., Geppetti, P., and Di Marzo, V. J., The vanilloid receptor (VR1)- mediated effects of anandamide are potently enhanced by the cAMP-dependent protein kinase. Neurochem., 77, 1660- 1663 (2001) https://doi.org/10.1046/j.1471-4159.2001.00406.x
- Di Marzo, V., Bisogno, T., and De Petrocellis, L., Anandamide: some like it hot. Trends Pharmacol. Sci., 22, 346-349 (2001) https://doi.org/10.1016/S0165-6147(00)01712-0
- Docherty, R. J., Yeats, J. C., and Piper, A. S., Inhibition of calcineurin inhibits the desensitization of capsaicin-evoked currents in cultured dorsal root ganglion neurones from adult rats. Br. J. Pharmacol., 121, 1461-1467 (1996) https://doi.org/10.1038/sj.bjp.0701272
- Hong, S. and Wiley, J. W., Early painful diabetic neuropathy is associated with differential changes in the expression and function of vanilloid receptor 1. J. Biol. Chem., 280, 618-627 (2004) https://doi.org/10.1074/jbc.M408500200
- Huang, S. M., Bisogno, T., Trevisani, M., Al-Hayani, A., De Petrocellis, L., Fezza, F., Tognetto, M., Petros, T. J., Krey, J. F., Chu, C. J., Miller, J. D., Davies, S. N., Geppetti, P., Walker, J. M., and Di Marzo, V., An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc. Natl. Acad. Sci. U.S.A., 99, 8400-8405 (2002) https://doi.org/10.1073/pnas.122196999
- Hwang, S. W., Cho, H., Kwak, J., Lee, S. Y., Kang, C. J., Jung, J., Cho, S., Min, K. H., Suh, Y. G., Kim, D., and Oh, U., Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc. Natl. Acad. Sci. U. S. A., 97,6155-6160 (2000) https://doi.org/10.1073/pnas.97.11.6155
-
Jung, J., Shin, J. S., Lee, S. Y., Hwang, S. W., Koo, J., Cho, H., and Oh, U., Phosphorylation of vanilloid receptor 1 by
$Ca^{2+}$ / calmodulin-dependent kinase II regulates its vanilloid binding. J. Biol. Chem., 279, 7048-7054 (2004) https://doi.org/10.1074/jbc.M311448200 - Khasar, S. G., Lin, Y. H., Martin, A., Dadgar, J., McMahon, T., Wang, D., Hundle, B., Aley, K. O., Isenberg, W., McCarter, G., Green, P. G., Hodge, C. W., Levine, J. D., and Messing, R. O., A novel nociceptor signaling pathway revealed in protein kinase C epsilon mutant mice. Neuron, 24, 253-260 (1999) https://doi.org/10.1016/S0896-6273(00)80837-5
- Lazar, J., Szabo, T., Marincsak, R., Kovacs, L., Blumberg, P. M., and Biro, T., Sensitization of recombinant vanilloid receptor-1 by various neurotrophic factors. Life Sci., 75, 153-163 (2004) https://doi.org/10.1016/j.lfs.2003.11.023
-
Nakamura, J., Suda, T., Ogawa, Y., Takeo, T., Suga, S., and Wakui, M., Protein Kinase C-dependent and – independent inhibition of
$Ca^{2+}$ influx by phorbol ester in rat pancreatic$\beta$ -cells. Cell Signal, 13, 199-205 (2001) https://doi.org/10.1016/S0898-6568(01)00136-X - Numazaki, M., Tominaga, T., Toyooka, H., and Tominaga, M., Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cepsilon and identification of two target serine residues. J. Biol. Chem., 277, 13375-13382 (2002) https://doi.org/10.1074/jbc.C200104200
- Oh, U., Hwang, S. W., and Kim, D., Capsaicin activates a nonselective cation channel in cultured neonatal rat dorsal root ganglion neurons. J. Neurosci., 16, 1659-1667 (1996)
- Olah, Z., Karai, L., and Iadarola, M. J., Protein kinase C alpha is required for vanilloid receptor 1 activation. Evidence for multiple signaling pathways. J. Biol. Chem., 277, 35752- 35759 (2002) https://doi.org/10.1074/jbc.M201551200
- Olah, Z., Karai, L., and Iadarola, M. J., Anandamide activates vanilloid receptor 1 (VR1) at acidic pH in dorsal root ganglia neurons and cells ectopically expressing VR1. J. Biol. Chem., 276, 31163-31170 (2001) https://doi.org/10.1074/jbc.M101607200
- Premkumar, L. S. Interaction between vanilloid receptors and purinergic metabotropic receptors: pain perception and beyond. Proc. Natl. Acad. Sci. U.S.A., 98, 6537-6539 (2001) https://doi.org/10.1073/pnas.121190798
- Premkumar, L. S. and Ahern, G. P., Induction of vanilloid receptor channel activity by protein kinase C. Nature, 408, 985-990 (2000) https://doi.org/10.1038/35050121
- Rathee, P. K., Distler, C., Obreja, O., Neuhuber, W., Wang, G. K., Wang, S. Y., Nau, C., and Kress, M., PKA/AKAP/VR-1 module: A common link of Gs-mediated signaling to thermal hyperalgesia. J. Neurosci., 22, 4740-4745 (2002)
- Roberts, N. A., Marber, M. S., and Avkiran, M., Specificity of action of bisindolylmaleimide protein kinase C inhibitors: do they inhibit the 70 kDa ribosomal S6 kinase in cardiac myocytes? Biochem. Pharmacol., 68, 1923-1928 (2004) https://doi.org/10.1016/j.bcp.2004.07.040
- Samuvel, D. J., Jayanthi, L. D., Bhat, N. R., and Ramamoorthy, S., A role for p38 mitogen-activated protein kinase in the regulation of the serotonin transporter: evidence for distinct cellular mechanisms involved in transporter surface expression. J. Neurosci., 25, 29-41 (2005) https://doi.org/10.1523/JNEUROSCI.3754-04.2005
- Shin, J., Cho, H., Hwang, S. W., Jung, J., Shin, C. Y., Lee, S. Y., Kim, S. H., Lee, M. G., Choi, Y. H., Kim, J., Haber, N. A., Reichling, D. B., Khasar, S., Levine, J. D., and Oh, U., Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia. Proc. Natl. Acad. Sci. U.S.A., 99, 10150-10155 (2002) https://doi.org/10.1073/pnas.152002699
- Smart, D., Gunthorpe, M. J., Jerman, J. C., Nasir, S., Gray, J., Muir, A. I., Chambers, J. K., Randall, A. D., and Davis, J. B., The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br. J. Pharmacol., 129, 227-230 (2000) https://doi.org/10.1038/sj.bjp.0703050
- Smith, J. A., Davis, C. L., and Burgess, G. M., Prostaglandin E2- induced sensitization of bradykinin-evoked responses in rat dorsal root ganglion neurons is mediated by cAMPdependent protein kinase A. Eur. J. Neurosci., 12, 3250-3258 (2000) https://doi.org/10.1046/j.1460-9568.2000.00218.x
- Szolcsanyi, J., Anandamide and the question of its functional role for activation of capsaicin receptors. Trends. Pharmacol. Sci., 21, 203-204 (2000) https://doi.org/10.1016/S0165-6147(00)01484-X
- Toullec, D., Pianetti, P., Coste, H., Bellevergue, P., Grand- Perret, T., Ajakane, M., Baudet, V., Boissin, P., Boursier, E., and Loriolle, F., The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J. Biol. Chem., 266, 15771-15781 (1991)
- Vellani, V., Mapplebeck, S., Moriondo, A., Davis, J. B., and McNaughton, P. A., Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J. Physiol., 534, 813-825 (2001) https://doi.org/10.1111/j.1469-7793.2001.00813.x
- Wang, Y., Kedei, N., Wang, M., Wang, Q. J., Huppler, A., Toth, A., Tran, R., and Blumberg, P. M., Interaction between PKCmu and the vanilloid receptor type 1. J. Biol. Chem., 279, 53674-53682 (2004) https://doi.org/10.1074/jbc.M410331200
- Welch, J. M., Simon, S. A., and Reinhart, P. H., The activation mechanism of rat vanilloid receptor 1 by capsaicin involves the pore domain and differs from the activation by either acid or heat. Proc. Natl. Acad. Sci. U.S.A., 97, 13889-13894 (2000) https://doi.org/10.1073/pnas.230146497
-
Xu, F., Satoh, E., and Iijima, T., Protein kinase C-mediated
$Ca^{2+}$ entry in HEK 293 cells transiently expressing human TRPV4. Br. J. Pharmacol., 140, 413-21 (2003) https://doi.org/10.1038/sj.bjp.0705443 - Zygmunt, P. M., Andersson, D. A., and Hogestatt, E. D., Delta 9- tetrahydrocannabinol and cannabinol activate capsaicinsensitive sensory nerves via a CB1 and CB2 cannabinoid receptor-independent mechanism. J. Neurosci., 22, 4720- 4727 (2002)
- Zygmunt, P. M., Petersson, J., Andersson, D. A., Chuang, H., Sorgard, M., Di Marzo, V., Julius, D., and Hogestatt, E. D., Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature, 400, 452-457 (1999) https://doi.org/10.1038/22761