Development of an SH-SAW Sensor for Detection of DNA

DNA 측정용 SH-SAW 센서 개발

  • Published : 2005.04.01

Abstract

We have developed SH (shear horizontal) surface acoustic wave (SAW) sensors for detection of the immobilization and hybridization of DNA (deoxyribonucleic acid) on the gold coated delay line of transverse SAW devices. The experiments of DNA immobilization and hybridization were performed with 15-mer oligonucleotides (probe and complementary target DNA). The sensor consists of twin SAW delay line oscillators operating at 100 MHz fabricated on $36^{\circ}$ rotated Y-cut $LiTaO_3$ piezoelectric single crystals. The relative change in the frequency of the two oscillators was monitored to detect the hybridization between target DNA and immobilized probe DNA in pH 7.4 PBS (phosphate buffered saline) solution. The measurement results showed a good response of the sensor to the mass loading effects of the DNA immobilization and hybridization with the sensitivity up to $1.55{\cal}ng/{\cal}ml/Hz$.

본 연구에서는 DNA의 고정화 및 DNA 혼성화 반응을 감지할 수 있는 SH형 SAW 센서를 개발하였다. 고정화 및 혼성화 반응에 사용된 탐침 DNA 및 표적 DNA는 상보적 결합이 일어날 수 있는 염기서열을 가진 15-mer의 올리고뉴클레 오티드를 사용하였다. SH형 SAW 센서는 압전 단결정 $36^{\circ}\;YX\;LiTaO_3$를 사용하여 100 MHz로 발진되는 이중 지연선 형태로 제작하였다. 제작된 센서는 Au가 증착된 박막위에 고정화된 탐침 DNA와 표적 DNA와의 혼성화 반응을 시키고 난 후 센서의 주파수 변화를 측정하였으며, DNA 고정화 및 혼성화 반응은 pH 7.4의 PBS 완충용액상에서 수행하였다. 개발된 SH형 SAW센서는 $1.55 {\cal}ng/{\cal}ml/Hz$의 민감도를 가지며, DNA 혼성화 특성에 기인한 질량하중 효과에 따른 안정적인 주파수 변화를 나타내었다.

Keywords

References

  1. Benjamin Lewin, 'GENES VI', Oxford University Press and Cell Press, 1994, 89-90
  2. K. Skogerboe, 'Molecular Biology Techniques', Anal. Chem., 65, 416-419, 1993 https://doi.org/10.1021/ac00060a610
  3. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, 'Nanowire nanosensors for highly sensitive and selective detection of biological and chemical speices', Science, 293, 1289-1291, 2001 https://doi.org/10.1126/science.1062711
  4. G. Marra and P. Schar, 'Recognition of DNA alteration by the mismatch repair system', Biochemical Journal, 338, 1-13, 1999 https://doi.org/10.1042/0264-6021:3380001
  5. T. Nordstorm, M. Ronaghi, L. Forsberg, U. DeFaire, R. Morgenstern, and P. Nyren, 'Direct analysis of single-nucleotide polymorphism on double-stranded DNA by pyrosequencing', Biotechnol. Appl. Biochem., 31. 107-112, 2000 https://doi.org/10.1042/BA19990104
  6. I. Abdel-Hamid, P. Atanasov, A. L. Ghindilis and E. Wilkins, 'Development of a flow-through immunoassay system', Sensors and Actuators B, 49, 202-210, 1998 https://doi.org/10.1016/S0925-4005(98)00125-7
  7. Keiko Ito, Koji Hashimoto, Yoshio Ishimori, 'Quantitative analysis for solid-phase hybridization reaction and binding reaction of DNA binder to hybrids using a quartz crystal microbalance', Anal. Chim. Acta, 327, 29-35, 1996 https://doi.org/10.1016/0003-2670(96)00061-X
  8. P. B. Luppa, L. J. Sokoll and D. W. Chan, 'Immunosensors - principles and applications to clinical chemistry', Clinica Chimica Acta, 314, 1-26, 2001 https://doi.org/10.1016/S0009-8981(01)00629-5
  9. W. Welsch, C. Klein, M. V. Schickfus and S. Hunklinger, 'Development of a surface acoustic wave immunosensor', Anal. Chem., 68, 2000-2004, 1996 https://doi.org/10.1021/ac960198z
  10. 이승희, 노용래, DART와 EWC/SPUDT형 SAW 필터의 특성 비교', 한국음향학회지, 18, 53-59, 1999
  11. R. Moller, A. Csaki, J. M. Kohler and W. Fritzsche, 'DNA probes on chip surfaces studied by scanning force microscopy using specific binding of colloidal gold', Nucleic Acids Res., 28, E91-95, 2000 https://doi.org/10.1093/nar/28.20.e91