Gas Hydrate Exploration by using PCS(Pressre Core Sampler): ODP Leg 204

압력코어를 이용한 가스 하이드레이트 탐사: ODP Leg 204

  • Lee Young-Joo (Petroleum and Marine Resources Research Division, KIGAM)
  • 이영주 (한국지질자원연구원 석유해저자원연구부)
  • Published : 2005.04.01

Abstract

Natural gas in deep sediment may occur in three phases based on the physical and chemical conditions. If the concentration of gas in pore water is less than the solubility, gas is dissolved. If the concentration of gas is greater than its solubility (water is saturated or supersaturated with gas), gas occurs as a fee gas below the gas hydrate stability Lone (GHSZ) and is present as solid hydrate within the GHSZ. The knowledge of gas concentration in deep sediment appears critical to determine the phase of natural gases and to understand the formation and distribution of gas hydrate. However, reliable data on gas concentration are usually available only from the upper section of marine sediment by the headspace gas technique, which is widely used for sampling of gases from the sediments. The headspace gas technique represents only a fraction of gases present in situ because sediments release most of the gases during recovery and sampling. The PCS (Pressure Core Sampler) is a downhole tool developed to recover a nominal $1{\cal}m$ long, $4.32{\cal}cm$ diameter core containing $1,465cm^3$ of sediment, pore water and gas at in situ pressure up to 68.9 MPa. During Leg 204, the PCS was deployed at 6 Sites. In situ methane gas concentration and distribution of gas hydrate was measured by using PCS tool. Characteristics of methane concentration and distribution is different from site to site. Distribution of gas hydrate in the study area is closely related to characteristics of in situ gas concentration measured by PCS.

심해저 퇴적물에 분포하는 천연가스는 물리, 화학적인 조건에 따라서 세 가지 상(phase)으로 존재한다. 즉, 공극수에 녹아있는 가스의 농도가 용해도 이하이면 용존 가스 형태로 존재할 것이며, 용해도 이상이면 자유가스가(free gas) 형성될 것이며, 자유가스를 포함하는 해저 퇴적물이 저온 고압 조건인 하이드레이트 안정 지역이라면 가스 하이드레이트로 존재한다. 심해저 퇴적물내의 가스의 농도를 정확히 파악할 수 있다면 천연가스와 하이드레이트의 형성과 분포를 예측할 수 쳐다. 그러나, 해저 퇴적물 내에 포함되어 있는 가스의 양을 정확히 측정하는 것은 매우 어렵다. 심해저 퇴적층에서 가스를 채취하는 방법으로 널리 이용되는 공기층 가스 기법을 이용하여 퇴적물내의 가스의 양을 가늠하는 것은 천부 퇴적층에서만 가능하고 심부 지층에서 채취한 가스는 코어 회수와 시료 채취 과정에서 대부분의 가스가 유실되고 극히 일부만 정량 분석된다. 압력 코어(Pressure Core Sampler PCS)는 길이 $1{\cal}m$, 반경 $4.32{\cal}cm$ 규격으로 총 $1,465cm^3$의 퇴적물을 68.9 Mpa 압력 하에서 채취하는 장비이다. ODP Leg 204 시추 동안에 총 6개 지점(site) 에서 압력 코어를 사용하여 각 시추 지점에서 심도에 따른 퇴적물내의 가스의 양과 가스 하이드레이트의 분포를 측정하였다. 분석 결과 시추 위치에 따라서 가스 농도 및 분포 특성이 서로 다르게 나타났다. 하이드레이트 릿지(Hydrate Ridge)의 정상 주변에는 해저면 퇴적물에 메탄가스가 과포화되어 있고 정상 측면 및 분지지역에는 일부 심도의 퇴적물에서만 과포화되어 있었다. 하이드레이트 릿지의 가스 하이드레이트 분포는 압력 코어에 의해서 측정한 현장(in-situ)의 가스 농도 특성과 매우 밀접한 관계가 있는 것으로 나타났다.

Keywords

References

  1. 이영주, 한현철, 류병재, ODP Leg 204 Sshipboard Scientific Party(2003) 가스 지화학을 이용한 천연가스 하이드레이트 탐사: ODP Leg 204의 새로운 결과. 지질학회지, 39권, p. 287-300
  2. Dickens,G. R. (2001) Modelling the global carbon cycle with a gas hydrate capacitor: Significance for the Latest Paleocene Thermal maximum. In: Paull C.K., and Dillon, W.P. (eds.) Natural gas hydrates: Occurrence, Distribution, and Detection. American Geophysical Union, Washhington D.C. p.19-38
  3. Dickens, G.R., Schroeder, D., Hinrichs, K-U. and the Leg 201 Scientific Party (2003) The pressure core sampler (PCS) on Ocean Drilling Program Leg201: general operations and gas release. In DHondt, S. L., Jorgensen, B. B., Miller, D. J., et al., Proc. ODP, Init. Rept., 201, 1-22 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA
  4. Dickens, G. R., Wallace, P. J., Paull, C. K. and Borowski, W. S. (2000) Detection of methane gas hydrate in the pressure core sampler (PCS): volume-pres sure-time relations during controlled degassing experiments. In Paull, C. K, Matsumoto, R., Wallace, P. J., et al., Proc. ODP, Sci. Results, v. 164: College Station, TX (Ocean Drilling Program) p. 113-126
  5. Katz, M. E., Pak, D. K., Dickens, G. R. and Miller, K G. (1999) The source and fate of massive carbon input during the Latest Paleocene Thermal Maximum, Science, v. 286, p. 1531-1533 https://doi.org/10.1126/science.286.5444.1531
  6. Kennett, J., Cannariato, K. G., Hendy, I. L., and Behl, R. J. (2003) Methane hydrate in Quaternary climate change: The Clathrate Gun Hypothesis, AGU special publication, 54, 216p
  7. Kulm, L. D., Suess, E., Moore, J. C., Carson, B., Lewis, B. T., Ritger, S. D., Kadko, D. C., Thornburg, T. M., Embley, R. W., Rugh, W. D., Massoth, G. J., Langseth, M. G., Cochrane, G. R. and Scamman, R. L. (1986) Oregon subduction zone: venting, fauna, and carbonates. Science, v. 231, p. 561-566 https://doi.org/10.1126/science.231.4738.561
  8. Kvenvolden, Keith. A, Barnard, Leo A., Cameron, Donald H. (1983) Pressure core barrel; application to the study of gas hydrate, Deep Sea Drilling Project Site 533, Leg 76, Initial Report of the Deep Sea Drilling Project 76 Publisher: Texas A&M University, Ocean Drilling Program, College Station TX, United States p. 367-375
  9. Kvenvolden, K A. and Lorenson, T. D. (2001) The Global Occurrence of Natural Gas Hydrate. In: Paull CK, and Dillon, W P., (eds.) Natural gas hydrates: Occurrence, Distribution, and Detection. American Geophysical Union, Washhington D.C. 124, p. 3-18
  10. Lee, Y-J., G. Claypool, A. Milkov, & Leg 204 Shipboard Scientific Party (2003) Preliminary results of organic geochemistry from ODP Leg 204, Proceeding of International GH symposium, 22p
  11. Lee, Y.-J., George Claypool, Alexei Milkov, Anne Trehu, and Leg 204 Shipboard Scientific Party (2004) Dynamics of gas migration and gas hydrate distribution: Evidence from ODP Leg 204, Proceedings of 5th International Conference on Asian Marine Geology, 120p
  12. Milkov, A, G. E. Claypool, Y.-J. Lee, W. Xu, G. R. Dickens, W S. Borowski, and the ODP Leg 204 Scientific Party (2003) In situ methane concentration at Hydrate Ridge offshore Oregon: new constraints on the global gas hydrate inventory from an active margin, Geology, v. 31, p. 833-836 https://doi.org/10.1130/G19689.1
  13. Milkov, A. V., G. R. Dickens, G. E. Claypool, Y.-J, Lee G. W S. Borowski, M. E. Torres, W Xu, H. Tomaru, A. Trehu, P. Schultheiss (2004) Co-existence of gas hydrate, free gas, and brine within the gas hydrate stability zone at the southern summit of Hydrate Ridge (Oregon margin): Evidence from prolonged degassing fo a pressurized core. Earth and Planetary Science Letters, v. 222. p. 829-843 https://doi.org/10.1016/j.epsl.2004.03.028
  14. Paull, C. K., Matsumcto, R. and Wallace P. J. (1996) Proc. ODP Initial Report, 164: College Station, TX (Ocean Drilling Program), 623p
  15. Pimmel, A. and Claypool, G. (2001) Intorduction to shipboard organic geochemistry on the JOIDES resolution, ODP Tech Note, 30 [On-line].
  16. Shipboard Scientific Party (2002) Leg 204 Preliminary Report, Ocean Drilling Program, TX, 81p
  17. Sloan, E. D. (1998) Clathrate Hydrates of Natural Gas. 2nd (ed.), Marcel Dekker, New York. 641p
  18. Suess, E., Bohrmann, G., Rickert, D., Kuhs, W.E., Torres, M. E., Trhu, A. and Linke, P. (2002) Properties and fabric of near-surface methane hydrates at Hydrate Ridge, Cascadia margin: Proceedings of the Fourth International Conference on Gas Hydrates, Yokohama, May 19-23, 740-744
  19. Torres, M. E., Bohrmann, G., McManus, J., deAngelis, M. A., Hammond, D., Klinkhammer, G., Suess, E. and Trehu A. M. (1999) Geochemical observations on Hydrate Ridge, Cascadia margin, July 1999. OSU Data Report 174, 87p
  20. Trehu, A. and Bangs, N. (2001) 3-D Seismic imaging of an active margin hydrate system, Oregon continental margin, report of cruise TTN112. Oregon State Univ. data rpt., 182p
  21. Trehu, A. M., Torres, M. E., Moore, G. E, Suess, E. and Bohrmann, G. (1999) Temporal and spatial evolution of a gas-hydrate-bearing accretionary ridge on the Oregon Continental margin. Geology, v. 27, p. 939-942 https://doi.org/10.1130/0091-7613(1999)027<0939:TASEOA>2.3.CO;2
  22. Trehu, A. M., Bohrman, G., Rack, E R, and Leg 204 Shipboard Scientific Party (2003) ODp, Init. repts., 204 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA
  23. Trehu, A. M., Bohrmann, G., Rack, E R, Collett, T. S., Goldberg, D. S., Long, P. E., Milkov, A. V., Riedel, M., Schultheiss, P., Torres, M. E., Bangs, N. L., Barr; S. R, Borowski, W. S., Claypool, G. E., Delwiche, M. E., Dickens, G. R., Gracia, E., Guerin, G., Holland, M., Johnson, J. E., Lee, Y-J., Liu, C.-S., Su, X., Teichert, B; Tomaru, H, Vanneste, M., Watanabe, M. and Weinberger; J. L. (2004) Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: constraints from ODP Leg 204. Earth and Planetary Science Letters, v. 222, 845-862 https://doi.org/10.1016/j.epsl.2004.03.035
  24. Westbrook, G. K, Carson, B. and Musgrave, R.J. (1994) Proc. ODP Initial Reports, 146 (Pt 1): College Station, TX, Ocean Drilling Program. Dickens, G. R., Paull, C. K. and Wallace, P. and the ODP Leg 164 Scientific Party, 1997. Direct measurement of in situ methane quantities in a large gas hydrate reservoir. Nature, v. 385, p. 427-428