DOI QR코드

DOI QR Code

Precision Calibration of Gyroscopes for Improving Dead-Reckoning Accuracy in Mobile Robots

이동로봇의 추측항법 정확성을 개선하기 위한 자이로스코프의 정확도 교정

  • 고재평 (동아대학교 미디어디바이스 연구센터) ;
  • 윤재무 (부산대학교 전자공학과) ;
  • 이장명 (부산대학교 전자공학과)
  • Published : 2005.05.01

Abstract

This paper describes a method aimed at improving dead-reckoning accuracy with gyroscopes in mobile robots. The method is a precision calibration procedure for gyroscopes, which effectively reduces the ill effects of nonlinearity of the scale-factor and temperature dependency. This paper also describes the methods of gyro data collection fur all ambient temperature$(-40^{\circ}C{\~}+80^{\circ}C)$ using cubic spline interpolation and defining the error function. The sensor used was a vibrating gyroscope called the EWTS82NA21, which is low lost and commonly used in car navigation system, made by Panasonic. This angular rate sensor utilizes Coriolis force generated by a vibrating tuning fork. The paper also provides experimental results to check the performance and the effectiveness of the proposed method.

Keywords

References

  1. B. Barshan, and H. F. Durrant-Whyte, 'Inertial navigation systems mobile robots', IEEE Transaction on Robotics and Automation, June, pp. 328-342, 1995 https://doi.org/10.1109/70.388775
  2. K. Komoriya, and E. Oyama, 'Position estimation of a mobile robot using optical fiber gyroscope (OFG)', International Conference on Intelligent Robots and Systems(IROS '94), Munich, Germany, September 12-16, pp. 143-149 https://doi.org/10.1109/IROS.1994.407398
  3. K. Park, H. Chung, and J. Lee, 'Dead reckoning navigation of a mobile robot using the indirect kalman filter,' Proc. of the IEEE/SICE/RSJ Int. Conf. on Multisensor Fusion and Integration for Intelligent Systems, Washington D.C. USA, Dec. 8-11, pp. 132-138 https://doi.org/10.1109/MFI.1996.572169
  4. H. Chung, L. Ojeda, and J. Borenstein, 'Accurate mobile robot dead-reckoning with precision-calibrated fiber-optics gyroscope,' IEEE Transaction on Robotics and Automation, vol. 17, no. 1, Feb. 2001, pp. 80-84 https://doi.org/10.1109/70.917085
  5. N. Barbour and G. Schmidt, 'Inertial sensor technology trends,' IEEE Sensors Journal, vol. 1, no. 4, Dec. 2001, pp. 332-339 https://doi.org/10.1109/7361.983473
  6. E. Abbott and D. Power, 'Land-vehicle navigation using GPS,' Proceedings of the IEEE, vol. 87, no. 1, Jan. 1999, pp. 145-162 https://doi.org/10.1109/5.736347
  7. J. Borenstein, 'Experimental evaluation of a fiber optics gyroscope for improving dead-reckoning accuracy in mobile robots,' Proc. of the IEEE Int. Conf. on Robotics and Automation, Leuven, Belgium, May 16-21, pp. 3456-3461, 1998 https://doi.org/10.1109/ROBOT.1998.680972
  8. L. Ojeda, C. Hakyoung, and J. Borenstein, 'Precision-calibration of fiber-optics gyroscopes for mobile robot navigation,' Proc. of the 2000 IEEE International Conference on Robotics and Automation, San Francisco, CA, April 24-28, pp. 2064-2069 https://doi.org/10.1109/ROBOT.2000.846333
  9. Panasonic Corporation, 'EWTS82NA21 angular rate sensor,' http://industrial.panasonic.com
  10. Analog Devices Corporation, 'AD7414 temperature sensor,' http://www.analog.com
  11. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and Flannery, B. P., 'Numerical recipes in fortran, the art of scientific computing,' Second Edition, Cambridge University Press, Cambridge, Reprinted 1995
  12. P. Henrici, 'Essential of numerical analysis,' John Wiley & Sons, New York, 1982
  13. S. McKinley, and M. Levine, 'Cubic spline interpolation,' http://online.redwoods.cc.ca.us/instruct/damold/laproj/Fall98/SkyMeg/Proj.PDF