DOI QR코드

DOI QR Code

제초제 Paraquat의 전자수용 및 방출에 대한 영향

Effect of Herbicide Paraquat on Electron Donor and Acceptor

  • 김미림 (대구한의대학교 식품조리영양학부) ;
  • 최경호 (대구가톨릭대학교 식품영양학과)
  • Kim Mi-Lim (Faculty of Cuisine & Nutrition, Daegu Haany University) ;
  • Choi Kyung-Ho (Department of Food Science and Nutrition, Daegu Catholic University)
  • 발행 : 2005.04.01

초록

Pparaquat의 전자수용 및 방출에 대한 작용을 검토한 결과는 다음과 같다. Rat mitocondria분산액에 paraquat를 첨가하였을 때 반응액이 청색으로 변색되었으며 Aluminium 박 또는 동전극을 장치한 photo cell중에서 paraquat에 전류를 통한 경우에도 음극에서부터 청색으로 변색되기 시작하여 660 nm에서 높은 홉광도를 나타내었다. 이 착색반응은 반응액에 산소를 첨가함으로서 탈색되었다. Paraquat에 $H^+$을 첨가하고 전류를 통한 결과 340 nm에서의 홉광도가 증가되었으며 경시적인 흡광도 증가의 모양은 $NAD^+$에 전류를 통한 경우와 거의 일치하였다. 이상의 결과로부터 paraquat가 전자를 수용 또는 방출할 수 있음이 확인되었고 이러한 paraquat의 작용이 생체내에 이화작용에서 생성되는 전자를 포획하고 산소에 직접 넘겨줌으로써 cytochrome 호흡쇄로의 단계별 전자전달계가 차단되어 급성독성을 일으키는 요인으로 추정된다.

When paraquat was added to the bacterial membrane or mitochondrial suspension, the mixture turned dark blue, but the color was disappeared by aeration. The same phenomenon was seen when electrons were supplied to the paraquat. Blue color appeared from near the cathode, and then spreaded to whole transit system. Coloration was accelerated by addition of alkali, but the color was reduced by addition of acid or oxygen. Paraquat exhibited absorption at ultraviolet region by electron transfer at the concentrations as low as 1.0 mM which did not exert difficulty in showing color reaction. Paraquat caused the increase of the optical density at 340 nm by electron transit, and an aspect of that had a strong resemblance to NADH. The acute toxic action of paraquat seemes to depend on inhibition of energy metabolism cased by paraquat action of electron donor and acceptor.

키워드

참고문헌

  1. Bhatnagar, R. S. and Hussaim, M. Z. 1979. Involvement of superoxide in the paraquat-induced enhancement of lung collagen synthesis in organ culture. Biochem. Biophys. Res. Commun. 819, 71-76
  2. Bowles, M.R., Mulbern, T. D., Gordon, R. B., Inglis, H. R., Sharpe, I. A., Cogill, J. L. and Pond, S. M. 1997. Herbicidespecific single chain antibody engineering for use in poisoning therapy. J. Biochem. 122(1), 101-108 https://doi.org/10.1093/oxfordjournals.jbchem.a021716
  3. Thanos I. C. G. and Simon, H. 1987. Electro-enzymic viologenmediated streospecefic reduction of 2-enoates with free and immobilized enoate reductase on cellulose filters or modified carbon electrodes. J. Biotechnol. 6(1), 13-29 https://doi.org/10.1016/0168-1656(87)90042-3
  4. Bus, J. S. Aust, S. D. and Gibson, J. E. 1975. A possible mechanism for paraquat toxicity. Res. Commun. Pathol. Pharmacol. 31, 31-38
  5. Chun, J. C., Ma, S. Y, Kim, S. E. and Lee, H. J 1997. Physiological responses of Rhehmannia glutinosa to paraquat and its tolerance mechanism. Pestic. Biochem. Physiol. 59, 51-63 https://doi.org/10.1006/pest.1997.2307
  6. Cserhati, T. and Valko, K. 1991. Interaction of diquat and paraquat with glutathione studied by means of chargetransfer chromatography. J. Liq. Chromatogry. 14(20), 3657-3671 https://doi.org/10.1080/01483919108049484
  7. Frank,D. M. F., Arora, P. K.,Blumer,J. L. and Sayre, L. M. 1987. Model study on the bioreduction of paraquat, ${Mpp}^+$, and analogs. evidence against a 'Redox cycling' mechanism in mptp neurotoxicity. Biochem. Biophys. Res. commun. 147(3), 1095-1104 https://doi.org/10.1016/S0006-291X(87)80183-3
  8. Fuerst, E. P. and Vaughn, K. C. 1990. Mechanisms of paraquat resistance. Weed Technol. 4, 150-156
  9. Gunther, H., Neumann, S. and Simon, H. 1987. 2-Oxocarboxy late reductase from proteus specids and its use for the preparation of (2r)-hydroxy acids. J. Biotechnol. 5(1), 53-65 https://doi.org/10.1016/0168-1656(87)90070-8
  10. Halliwell, B. 1978. Biochemical mechanie- accounting for toxic action of oxygen on living organisms : the sky role of superoxide dismutase. Cell Biol. Int. Rep. 2, 113-128 https://doi.org/10.1016/0309-1651(78)90032-2
  11. Harvey, B. M. R. and Harper, D. B. 1978. Mechanism of paraquat tolerance in perenial ryegrass: I. uptake, metabolism and translocation of paraquat. Plant Cell Environ. 1. 203-209 https://doi.org/10.1111/j.1365-3040.1978.tb00762.x
  12. Harvey, B. M. R. and Harper, D. B. 1978. Mechanism of paraquat tolerance in perenial ryegrass : II. role of superoxide dismutase, catalase and peroxidase. Plant Cell Environ. 1, 211-215 https://doi.org/10.1111/j.1365-3040.1978.tb00763.x
  13. Hassan, H. and Fridovich, I. 1978. Superoxide radical and the oxygen enhancement of the toxicity of paraquaton E. coli. J. Biol. chem. 253, 8143-8148
  14. Kim, C. S. and Choi, K. H. 1991. Effect of paraquat treatment on fatty acid compasition of menbrane lipids of Bacillus megaterium and Saccharomyces cerevisiae. Hyosung j. Appl. Sci. 53-61
  15. Kim, M. L. and Choi, K. H. 1994. Inhibitory action of the paraquat on Superoxide dismutase of Escherichia coli. J. Korean Soc. Food Nutr. 23(5), 849-855
  16. Klier, K., Kresze, G., Werbitzky, O. and Simon, H. 1987. The microbial redutive splitting of the N-O yond of dihydrooxazines; An alternative to the chemical reduction. Tetrahedron letters. 28(24), 2677-2680 https://doi.org/10.1016/S0040-4039(00)96179-3
  17. Liochev, S. and Fridovich, I. 1986. Variate-stimulated oxidation of NAD(P)H by biomembrane is a superoxid einitiated radical chain reaction, Arch. Biochem. Biophys. 250, 139-145 https://doi.org/10.1016/0003-9861(86)90710-1
  18. Murray, K., Gull, K. and Dickson, A. J. 1995. Dichloroactate increases cell and product yields in hybridoma batchcultures improved production of anti-paraquat monoclonal antibody. Biochem. Soc. Trans. 23(4), 585s
  19. Neumann, S., Guter. and Simon, H. 1984. On a Nonpyridine nucleotide-dependent 2-oxo acid reducrase with extremely broad substrate specificity. Eur. Congr. Biotechnol. 1, 377-382
  20. Norman, M. A. and Fuerst, E. P. 1997. Interactions of cations with paraquat in leaf sections of resistant and sensitive biotypes of Conyza bonariensis. Pestic. Biochem. Physiol. 57, 181-191 https://doi.org/10.1006/pest.1997.2276
  21. Qi, Y. M., Greenfield, P. F. and Reid, S 1996. Evaluation of a simple protein-free medium that supports high levels of monoclonal antibody production. Cytotechnol. 21(2), 95-109 https://doi.org/10.1007/BF02215660
  22. Shibata, K. and Iwai, K. 1988. Effect of dietary paraquat on the enzyme activies involved in tryptophan-niacin metabolism in rats. Agric. Biol. Chem. 50(1), 255-256
  23. Shinohara, T. and Seto, Y. 1986. In vitro inhibition of acetylchlinesterase by paraquat. Agric. Biol. Chem. 50(1), 255-256 https://doi.org/10.1271/bbb1961.50.255
  24. Shinohara, T. and Seto, Y. 1987. Inhibitory effects of paraquat and its related compound on the acetylcholinesterase activies of human erythrocytes. Agric. Biol. Chem. 51(8), 2131-2138 https://doi.org/10.1271/bbb1961.51.2131
  25. Simon, H., Bader, J., Guther, H., Neumann, S. and Thanos, J. 1984. Biohydrogenation and electromicrobial and electronenzymatic reduction methods for the preparation of chiral compounds. Ann. N. Y. Acad. Sci. 9, 171-185
  26. Thanos I. C. G. and Simon, H. 1987. Electro-enzymic vioIogenmediated streospecefic reduction of 2-enoates with free and immobilized enoate reductase on cellulose filters or modified carbon electrodes. J. Biotechnol. 6(1), 13-29 https://doi.org/10.1016/0168-1656(87)90042-3
  27. Tidswell, E. C, Thompson, A. N. and Gareth Morris, J. 1991. Selection in chemostat culture of a mutant strain of Clostridium thiobutyricm improved in its reduction of ketones, J. Microbiol. 35, 317-322
  28. Vaishampayan, A. 1985. Muta genicity of bipyridilium salts in a $N_2$-fixing cyanobacterium. Microbios. 43, 53-65