DOI QR코드

DOI QR Code

동물세포의 부착에 관여하는 살모넬라 유전자의 특성 연구

Characterization of Salmonella Adhesins Required for Colonization of Animals

  • 김영희 (부산대학교 자연과학대학 미생물학과) ;
  • 김상웅 (부산대학교 자연과학대학 미생물학과) ;
  • 강호영 (부산대학교 자연과학대학 미생물학과)
  • Kim Young Hee (Department of Microbiology, Pusan National University) ;
  • Kim Sam Woong (Department of Microbiology, Pusan National University) ;
  • Kang Ho Young (Department of Microbiology, Pusan National University)
  • 발행 : 2005.04.01

초록

살모넬라는 질병을 일으키기 위해서 장내의 상피세포에 먼저 부착하여 집락을 이루게 된다. 이에 따라 살모넬라는 부착에 관여하는 세포내 몇 몇 소기관들을 합성한다. 이러한 소기관에는 type 1 fimbriae, plasmid-encoded fimbriae, long polar fimbriae 그리고 thin aggregative fimbriae 등이 있다. 본 논문에서는 type 1 fimbriae, thin aggregative fimbriae, LP fimbriae, 그리고 PE fimbriae 각각을 결손시킨 변이주와 4종류를 모두 결손시킨 변이주를 만들 수 있었다. 변이주들에 대해서 세포배양 부착성 실험을 한 결과, 각각을 결손시킨 변이주들은 몇몇 mammalian 세포주에서 야생형 살모넬라와 동일한 양상으로 부착성을 나타내었고 마우스 실험에서 야생형과 거의 마찬가지로 독성을 가지고 있었다. 반면, 4종류의 fimbriae가 모두 결손된 균주는 닭에서는 독성을 나타내었으나 마우스에서는 매우 약독화되어있음을 확인할 수 있었다. 이상의 결과로부터 오는 차이점은 닭과 비교하여 마우스에서 살모넬라의 부착을 매개하는 표면 구조에 연관성이 있음을 제시하였다.

Following ingestion, Salmonella must adhere to and colonize the intestinal epithelium of the host in order to establish infection. S. typhimurium synthesize several appendages that are believed to mediate attachment. These include type 1 fimbriae, plasmid-encoded (PE) fimbriae, long polar (LP) fimbriae, and thin aggregative fimbriae. However, the precise roles of these putative adhesins remain unclear, due to conflicting data in the literature. We constructed strains lacking four different fimbriae including type 1 fimbriae, PE fimbriae, LP fimbriae, and thin aggregative fimbriae, as well as strains lacking each fimbriae alone. In cell culture adhesion assays, these mutants adhered to several mammalian cell lines as well as wild-type S. typhimurium. These strains were also screened for virulence in mice, and all strains were virulent or nearly as virulent as their wild-type parents. In contrast, When a strain lacking four fimbriae was screened for virulence in chicks, it was found to be highly attenuated. This suggests a role for either type 1 fimbriae, PE fimbriae, LP fimbriae or thin aggregative fimbriae or a combination of thease fimbriae in the colonization of chicks. It also suggests that differences exist with respect to the surface structures that mediate attachment of Salmonella in chicks as compared with mice.

키워드

참고문헌

  1. Baumler, A. J., R. M. Tsolis, F. A., Bowe, J. G. Kusters, S. Hoffmann, and F. Heffron. 1996. The pef operon of Salmonella typhimurium mediates adhesion to murine small intestine and is necessary for fluid accumulation in the infant mouse. Infect. Immun. 64, 61-68
  2. Baumler, A. J., R. M. Tsolis, F. Heffron. 1996. The lpf fimbrial operon mediates adhesion of Sallmonella typhimurium to murine Peyer's patches. Proc. Natl. Acad. Sci. 93, 279-283
  3. Baumler, A. J., R. M. Tsolis, F. Heffron. 1996. Contribution of fimbrial operons to attachment to and invasion of epithelial cell lines by Salmonella typhimurium. Infect. Immun. 64, 1862-1865
  4. Bochner, B. R. 1984. Curing bacterial cells of lysogenic viruses by using UCB indicator plates. Biotechniques 2, 234-240
  5. Bean N. H., Goulding J. S., Lao C., Angulo F. J. 1996. Surveillance for foodborne-disease outbreaks - United States, 1998-1992. MMWR CDC Surveill Summ. 45, 1-66
  6. Collazo, D. M., M. K. Zierler, and J. Galan. 1995. Functional analysis of the Salmonella typhimurium invasion genes invI and invJ and the indetification of a target of the protein secretion apparatus encoded by the inv loces. Mol. Microbiol. 15, 25-38 https://doi.org/10.1111/j.1365-2958.1995.tb02218.x
  7. Collazo, C. M. and J. E. Galan. 1997. The invasion-assaodated typeIII protein secretion system in Salmonella-a review. Gene 192, 51-59 https://doi.org/10.1016/S0378-1119(96)00825-6
  8. Curtiss R 3rd, Hassan J. O. 1996. Nonrecombinant and recombinant avirulent Salmonella live vaccines for poultry. Vet Immunol Immunopathol. 54, 365-72 https://doi.org/10.1016/S0165-2427(96)05683-8
  9. Eichelberg, K., C. C. Ginocchio, and J. E. Galan. 1994. Molecular and fuctional chracterization of the Salmonella typhimurium invasion genes invB and invC:homology of InvC to the F0F1 ATPase family of proteins. J. Bacteriol. 176, 4501-4510
  10. Falkow, S. 2004. Molecular Koch's postulates applied to bacterial pathogenicity--a personal recollection 15 years later. Nat Rev Microbiol. 2, 67-72 https://doi.org/10.1038/nrmicro799
  11. Galan, J. E. and R. Curtiss III. 1989. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc. Natl. Acad. Sci. 86, 6383-6387
  12. Ghosh, A. R., D. Sen, D. A. Sack and A. T. Hoque. 1993. Evaluation of conventional media for detection of colonization factor antigens of enterotoxigenic Escherichia coli.J. Clin. Microbiol. 31, 2163-2166
  13. Ginocchio, C. C., J. Pace and J. E. Galan. 1992. Identification and molecular characterization of a Salmonella typhimurium gene involved in triggering the internalization of salmonellae into cultured epithelial cells. Proc. Natl. Acad. Sci. 89, 5976-5980
  14. Henle, G., and F. Deinhardt. 1957. The establishment of strains of human cells in tissue culture. J. Immunol. 79, 5449
  15. Hook, E. W. 1985. Salmonella species (including typhoid fever), In: G. L. Mandell, R G. Douglas and J. E. Bennett (eds), Principles and practices in infectious diseases, Wiley and Sons, New York, NY
  16. Hosieth, S. K., and B. A. D. Stocker. 1981. Aromaticdependent Salmonella typhimurium are non-virulent and effective as vaccines. Nature (London) 291, 238-239 https://doi.org/10.1038/291238a0
  17. Kaniga, K. J., C. Bossio, and J. E. Galan. 1994. The Salmonella typhimurium invation genes invF and invG encode homologes of the AraC and PulD family of proteins. Mol. Microbiol. 13, 555-568 https://doi.org/10.1111/j.1365-2958.1994.tb00450.x
  18. Korhonen, T. K. 1979. Yeast cell agglutination by purified enterobacterial pili. FEMS Microbiol. Lett. 6, 421-425 https://doi.org/10.1111/j.1574-6968.1979.tb03756.x
  19. Kuo, T. T. and B. A. D. Stocker. 1970. ES18, a general transducing phage for smooth and non-smooth Salmonella typhimurium. Virology 42, 621-632 https://doi.org/10.1016/0042-6822(70)90308-9
  20. Lee, M. D., R. Curtiss III, and T. Peay. 1996. The effect of bacterial surface structures on the pathogenesis of Salmonella typhimurium infection in chickens. Avian Dis. 40, 28-36 https://doi.org/10.2307/1592368
  21. Lennox, E. S. 1955. Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1, 190-206 https://doi.org/10.1016/0042-6822(55)90016-7
  22. Lockman, H. A. and R. Curtiss III. 1992. Virulence of non-type 1-fimbriated and nonfimbriated nonflagellated Salmonella typhimurium mutants in murine typhoid fever. Infect Immun. 60, 491-496
  23. Luria, S. E. and J. W. Burrous. 1957 Hybridization between Escherichia coli and Shigella. J. Bacteriol. 74, 461-476 https://doi.org/10.1002/path.1700740226
  24. McClelland et.al. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852-856 https://doi.org/10.1038/35101614
  25. Mead, P. S., L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro, P. M. Griffin, and R. V. Tauxe. 1999. Food- related illness and death in the United State. Emerg. Infect. Dis. 5, 607-625 https://doi.org/10.3201/eid0505.990502
  26. Moore, A. E., L. Sabachesky, and H. W. Toolan. 1995. Cancer Research. 15, 598
  27. Morrow, B. J., J. E. Graham, and R. Curtiss III. 1999. Genomic subtractive hybridization and selective capture of transcribed sequences indentify a novel Salmonella typhimurium fimbrial operon and putative transcriptional regulator that are absent from the Salmonella typhi genome. Infect. Immun. 67, 5106-5116
  28. Penfold, R. J. and J. M. Pemberton. 1992. An improved suicide vector for construction of chromosomal insertion mutations in bacteria. Gene 118, 145-146 https://doi.org/10.1016/0378-1119(92)90263-O
  29. Ralph, P. and I. Nakoinz. 1975. Phagocutosis and cytocytosis by a macrophage tumour and its cloned cell line. Nature 257, 393-394 https://doi.org/10.1038/257393a0
  30. Reed, L. J., and H. Muench. 1938. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27, 493-497
  31. Schmieger, H. 1972. Phage P22-mutants with increased of decreased transduction abilities. Mol. Gen. Genet. 119, 75-88 https://doi.org/10.1007/BF00270447
  32. St. Louis, M., D. L. Morse, M. E. Potter, T. M. DeMlfi, J. J. Guzewich, R. V. Tauxe, and P. A. M. Blake. 1998. The emergence of grade A eggs as a major source of Salmonella enteritidis infections, JAMA, 259, 2103-2107 https://doi.org/10.1001/jama.259.14.2103
  33. Sukupolvi, S., R. G. Lorenz, J. I. Gordon, Z. Bian, J. D. Pfeiffer, S. J. Normark, and M. Rhen. 1997. Expression of thin aggregative fimbriae promotes interaction of Salmonella typhimurium SR-11 with mouse small intestinal epithelial cells. Infect. Immun. 65, 5320-5325
  34. Van Der Velden, A. W. M., A. J. Baumler, R. M. Tsolis and F. Heffron. 1998. Multiple fimbrial adhesins are required for full virulence of Salmonella typhimurium in mice. Infect. Immun. 66, 2803-2808