DOI QR코드

DOI QR Code

Antimutagenic and Cytotoxic Effects of Ethanol Extracts from Five Kinds of Seaweeds

다섯 가지 해조류 에탄올 추출물의 항돌연변이 활성 및 암세포 성장억제 효과

  • Kim, Sung-Ae (Dept. of Food and Nutrition, Hannam University) ;
  • Kim, Jin (Dept. of Food and Nutrition, Hannam University) ;
  • Woo, Mee-Kyung (Metamanna Co.) ;
  • Kwak, Chung-Shil (Aging and Physical Culture Research Institute, Seoul National University) ;
  • Lee, Mee-Sook (Dept. of Food and Nutrition, Hannam University)
  • 김성애 (한남대학교 식품영양학과) ;
  • 김진 (한남대학교 식품영양학과) ;
  • 우미경 ((주)메타만나) ;
  • 곽충실 (서울대학교 체력과학노화연구소) ;
  • 이미숙 (한남대학교 식품영양학과)
  • Published : 2005.04.01

Abstract

The protective effects of ethanol extracts from 5 seaweeds on the mutagenic and cytotoxic damage were evaluated. They were separately extracted using ethanol from dried samples at room temperature, and freeze-dried. The inhibition effects on the mutagenicity in Salmonella assay by Ames test and cancer cell inhibitory effect in HeLa cell, MCF-7 cell and SNU -638 cell by MTT assay were assayed. Seaweed fusiforme, sea tangle and green laver showed strong inhibitory effect against 2-nitrofluorene, sodium azide- or 2-anthramine-induced mutagenicities in Salmonella Typhimurium TA 98 and TA 100 at the level of 2.5 mg ethanol extract per plate. Cancer cell inhibitory effect was shown with all of the seaweed extracts. Green laver, sea mustard, sea tangle and seaweed fusiforme showed strong cytotoxicity against HeLa and MCF-7 cells, with inhibiting by $92\~93\%$ and $89\~92\%$, respectively. These data show that 5 seaweeds tested in this study might be potent functional foods for cancer prevention, and consumption of these seaweeds in adequate amount is recommended.

한국과 일본을 비롯한 극동아시아 지역에서 널리 사용되고 항암효과가 있는 것으로 알려진 톳, 다시마, 미역, 파래, 김을 대상으로 각 해조류 에탄을 추출물을 Ames test를 이용하여 돌연변이 유발 억제능을 검색하고, MTT assay를 이용하여 HeLa cell, MCF-7 cell과 SNU-638 cell에 대한 암세포 성장억제 효과를 비교한 결과는 다음과 같다. 5종의 해조류 에탄올 추출물의 2-anthramine에 대한 간접작용 돌연변이능 억제효과를 S. Typhimurium TA 98에서 측정한 결과, 톳$(100\%)$, 다시마$(94.2\%)$가 3.5 mg/plate에서, 파래 $(68.5\%)$가 4.5 mg/plate에서 효과적인 돌연변이 억제능을 나타냈고, S. Typhimurium TA 100에서는 파래$(100\%)$, 톳$(100\%)$, 다시마$(94.1\%)$가 각각 1.5 mg/plate, 2.5 mg/plate, 4.5 mg/plate의 농도에서 최대 돌연변이 억제 효과를 보였다. 반면 미역과 김은 간접작용 돌연변이 억제 효과가 없는 것으로 나타났다. 직접 작용 항돌연변이능을 S. Typhimurium TA 98로 측정한 결과, 톳, 미역과 파래 모두 4.5 mg/plate의 농도에서 각각 $83\%,\;73\%,\;73\%$의 저해율을 보여 2-nitro-flouorene의 돌연변이능에 대한 저해율이 비교적 높은 것으로 나타났다. 또한 S. Typhimurium TA 100에서 sodium azide의 돌연변이능에 대한 저해효과가 가장 큰 해조류는 톳, 다시마와 파래로 세 가지 해조류 모두 3.5 mg/plate의 농도에서 $100\%$ 저해율을 보였다. 반면, S. Typhimurium TA 98에서 미역과 김은 4.5 mg/plate의 농도에서 각각 $73\%,\;50%$ 정도의 저해율을 나타냈고, S. Typhimurium TA 100에서는 $0\%$ 저해율을 보여 직접작용돌연변이에 대한 저해 능력이 적은 것으로 나타났다. MTT assay를 이용하여 HeLa cell과 MCF-7 cell, SNU-638 cell에 대한 암세포 성장억제 효과를 관찰한 결과, 5종 해조류의 에탄을 추출물 모두 암세포 증식을 억제하였다. HeLa cell의 성장을 $90\%$ 이상 저해한 해조류는 톳, 다시마, 미역, 파래였고, 그 효과를 건조무게로 비교하면 파래, 미역, 다시마, 톳의 순이었다. 김은 $56\%$ 저해율을 나타냈다. MCF-7 cell에 대한 세포 성장억제 효과 역시 $90\%$ 이상 저해율을 나타낸 해조류는 파래, 미역, 다시마, 톳의 순이었고, 김은 $50\%$의 저해율을 나타냈다. SNU-638 cell에 대한 세포 성장억제 정도는 HeLa cell이나 MCF-7 cell에 대한 세포성장 억제 효과보다는 다소 낮았다. 저해율이 $70\%$ 이상인 해조류는 파래, 미역, 다시마, 톳이었고, 김은 $68\%$로 나타나 해조류 간에 차이는 적었다. 이상에서 Ames test와 MTT assay를 통해 해조류 에탄올 추출물의 항돌연변이 효과와 암세포 성장억제 효과를 검색한 결과, 톳, 파래와 다시마는 항돌연변이 효과 및 암세포 성장억제 효과가 우수한 것으로 나타났고, 암세포에 대한 항암 효과는 각 시료마다 정도의 차이는 있으나 5종의 해조류 모두 암세포 증식을 억제하는 것으로 나타났다. 이 결과는 해조류가 개발 가능한 고부가가치의 기능성식품 소재임을 확인한 것으로서, 이를 위해서는 갈조류, 녹조류, 홍조류 등의 해조류에 함유된 암예방 또는 항암작용을 가진 새로운 생리활성물질을 탐색할 필요가 있다.

Keywords

References

  1. Watson RR, Leonard TK. 1986. Selenium and vitamin A, E and C: nutrients with cancer prevention properties. J Am Diet Assoc 86: 505-510
  2. Mohn GR. 1981. Bacterial systems for carcinogenicity testing. Mutat Res 87: 191-210 https://doi.org/10.1016/0165-1110(81)90032-4
  3. Kada T, Morita K, Inoue T. 1978. Antimutagenic action of vegetable factors on the mutagenic principle of tryptophan pyrolysate. Mutat Res 53: 351-353 https://doi.org/10.1016/0165-1161(78)90008-0
  4. Song GS, Ahn BY, Maeong IK, Kwon YJ, Han SB, Choi DS. 1997. Antimutagenicity screening of water extracts from Chinese herbs with SOS Chromotest with several direct mutagens. Food Sci Biotechnol 6: 214-218
  5. Song GS, Ahn BY, Lee GS, Maeng IK, Choi DS. 1997. Effect of hot water extracts from medicinal plants on the mutagenicity of indirect mutagens. Korean J Food Sci Technol 29: 1288-1294
  6. Kuroda Y, Inoue T. 1988. Antimutagenesis by factors affecting DNA repair in bacteria. Mutat Res 202: 387-391 https://doi.org/10.1016/0027-5107(88)90200-X
  7. Chiharu N, Tadashi N, Toshimara Y. 1992. Effect of pH on the in vitro absorption of mutagens to dietary fibers. Biosci Biotech Biochem 56: 1100-1105 https://doi.org/10.1271/bbb.56.1100
  8. Yasuji O, Kiyoka HO. 1994. Identification of antimutagenic activities in the extract of an edible brown algae. Hijikia fusiforme (Hijiki) by ume gene expression system in Salmonella typhimuriurn (TA 1535/pSK 1002). J Sci Food Agric 66: 103-109 https://doi.org/10.1002/jsfa.2740660115
  9. Okai Y, Higashi-Okai K, Nakamura S. 1993. Identification of heterogenous antimutagenic activities in the extract of edible brown seaweeds, Laminaria japonica (Makonbu) and Undaria pinnatifida (Wakame) by the ume gene expression system in Salmonella typhimurium (TA 1535/pSK 1002). Mutat Res 303: 63-70 https://doi.org/10.1016/0165-7992(93)90096-E
  10. Ryu BH, Kim DS, Cho KJ, Sin DB. 1989. Antitumor activity of seaweeds toward sarcoma-180. Korean J Food Sci Technol 21: 595-600
  11. Fujihara M, Nagumo T. 1993. An influence of the structure of alginate on the chemotatic activity of macrophages and antitumor activity. Carbohydrate Research 243: 211-216 https://doi.org/10.1016/0008-6215(93)84094-M
  12. Ebihara K, Kiriyama S. 1990. Physiochemical property and physiological function of dietary fiber. Nippon Shokuhin Kogyo Gakkaishi 37: 916-925 https://doi.org/10.3136/nskkk1962.37.11_916
  13. Kim HS, Kim GJ. 1998. Effects of the feeding Hijikia fusiforme (Harvey) Okamura on lipid composition of serum in dietary hyperlipidemic rats. J Korean Soc Food Sci Nutr 27: 718-723
  14. Hurch FC, Meade JB, Treanor RE, Whinna HC. 1989. Antithrombotic activity of fucoidin with heparin cofactor II, antithrombin III and thrombin. J Biol Chem 6: 361-375
  15. Kim Kl, Seo HD, Lee HS, Jo HY, Yang HC. 1998. Studies on the blood anticoagulant polysaccharide isolated from hot water extracts on Hijikia fusiforme. J Korean Soc Food Sci Nutr 27: 1204-1210
  16. Ito K, Tsuchiya Y. 1972. The effect of algal polysaccharides on the depressing of plasma cholesterol levels in rat. In Proc. of 7th Int. Seaweed Symp. Nishizawa K, ed. Univ. Tokyo Press, Japan. p 558-561
  17. Kim DS, Park YH. 1985. Uronic acid composition, block structure and some related properties of alginic acid. J Korean Fish Soc 18: 29-36
  18. Colliec S, Fischer AM, Tapon-Bretaudiere J, Boisson C, Durand P, Jozefonvicz J. 1991. Anticoagulant properties of a fucoidan fraction. Thromb Res 64: 143-154 https://doi.org/10.1016/0049-3848(91)90114-C
  19. Yamamoto L, Takahashi M, Tamura E, Maruyama H, Mori H. 1984. Antitumor activity of edible marine algae: Effect of crude fucoidan fraction prepared from edible brown seaweeds L-1210 leukemia. Hydrobiologia 116: 145-150 https://doi.org/10.1007/BF00027653
  20. Yamamoto L, Nagumo T, Takahashi M, Fujihara M, Suzuki Y, Lizima N. 1981. Antitumor effect of seaweeds: III. Antitumor effect of an extract from Sargassum. Jap J Exp Med 51: 187-189
  21. Cho KJ, Lee YS, Ryu BH. 1990. Antitumor effect and immunology activity of seaweeds toward sarcoma-180. Bull Korean Fish Soc 23: 345-352
  22. Kim IS, Kim SB, Park YH. 1994. Desmutagenic of seaweed and vegetable extracts against mutagenicity of Maillard reacting products. Bull Korean Fish Soc 27: 139-141
  23. Lee NH, Oh KI. 2002. Screening of radical scavenging effects from marine algae. Cheju J Life Science 3: 95-101
  24. Lee BH, Choi BW. 1996. Extraction of water soluble antioxidants from seaweeds. J Korean Ind & Eng Chemistry 7: 1069-1077
  25. Han HS, Bae SJ, Kim MH. 2004. Effects of Porphyra tenera extracts on formation of collagen cross-link in ovariectomized rats. J Korean Soc Food Sci Nutr 33: 324-330 https://doi.org/10.3746/jkfn.2004.33.2.324
  26. Maron DM, Ames BN. 1983. Revised methods for the Salmonella mutagenicity test. Mutat Res 113: 173-215 https://doi.org/10.1016/0165-1161(83)90010-9
  27. Matsushima T, Sugimura T, Nagao M, Yahagi T, Shirai A, Sawamura M. 1980. Factors modulating mutagenicity in microbial test. In Shotr-term test, systems for detecting carcinogens. Norphth KH, Gamer RC, eds. Springer, Berling. p 273-275
  28. Charmichael J, Degraff WG, Gazdar AF, Minna JD, Michell JB. 1987. Evaluation of a tetrazolium based semiautomated colorimetric assay, assessment of chemosensitivity testing. Cancer Res 47: 936-941
  29. Park YB, Ahn JK, Yoo SJ, Park DC, Kim IS, Park YH, Kim SB. 1998. Elucidation of anti-tumor initiator and promoter derived from seaweed-4: desmutagenic principles of Ecklonia stolonifera extracts against carcinogenic heterocyclic amines. J Korean Soc Food Sci Nutr 27: 537-542
  30. Ryu BH, Chi BS, Kim DS, Ha MS. 1986. Desmutagenic effect of extracts obtained from seaweeds. Bull Kor Fish 19: 502-508
  31. Takahi N, Hiroaki K, Haruki Y, Terukazu N. 1991. An anticoagulant fucoidan from the brown seaweed Ecklonea kurome. Phytochemistry 30: 535-539 https://doi.org/10.1016/0031-9422(91)83722-W
  32. Riou D, Colliec-Jouault S, Pinczon du Sel D, Bosch S, Siavoshian S, Le Bert V, Tomasoni C, Sinquin C, Durand P, Roussakis C. 1996. Antitumor and antiproliferative effects of a fucan extracted from Ascophyllum nodosum against a non-small-cell bronchopulmonary carcinoma line. Anticancer Res 16: 1213-1218
  33. Ellouali M, Boisson-Vidal C, Durand P, Jozefonvicz J. 1993. Antitumor activity of low molecular weight fucans extracted from brown seaweed Ascophyllum nodosum. Anticancer Res 13: 2011-2019
  34. Krinskey NI. 1993. Micronutrients and their influence on mutagenicity and malignant transformation. Ann New York Acad Sci 686: 229-234 https://doi.org/10.1111/j.1749-6632.1993.tb39180.x
  35. Krinskey NI. 1994. Carotenoids and cancer, basic research studies, natural antioxidants in human health and disease. Ann New York Acad Sci 239: 1 -6 https://doi.org/10.1111/j.1749-6632.1974.tb25310.x
  36. Funahashi H, Imai T, Mase T, Sekiya M, Yokoi K, Hayashi H, Shibata A, Hayashi T, Nishikawa M, Suda N, Hibi Y, Mizuno Y, Tsukamura K, Hayakawa A, Tanuma S. 2001. Seaweed prevents breast cancer? Jpn J Cancer Res 92: 483-487 https://doi.org/10.1111/j.1349-7006.2001.tb01119.x

Cited by

  1. Ishige sinicola Extracts Induce Apoptosis via Activation of a Caspase Cascade in Human HeLa Cells vol.41, pp.7, 2012, https://doi.org/10.3746/jkfn.2012.41.7.901
  2. Nutritional Characteristics of Kochujang Added With Fermented Extracts of Hizikia fusiforme vol.27, pp.4, 2012, https://doi.org/10.13103/JFHS.2012.27.4.473
  3. Effect of Temperature and pH on Trypsin Inhibitory Activity of Ethanol Extracts from Ecklonia cava vol.27, pp.6, 2012, https://doi.org/10.7841/ksbbj.2012.27.6.330
  4. Antioxidative, Antimutagenic, and Cytotoxic Activities of Ethanol Extracts from Cornus officianalis vol.37, pp.1, 2008, https://doi.org/10.3746/jkfn.2008.37.1.1
  5. Study on Food Culture of Koreans over 80-Years-Old Living in Goorye and Gokseong vol.27, pp.2, 2012, https://doi.org/10.7318/KJFC/2012.27.2.142
  6. Antioxidant and digestive enzyme inhibitory effects of Eisenia bicyclis extracted by different methods vol.23, pp.1, 2016, https://doi.org/10.11002/kjfp.2016.23.1.97
  7. Whitening Effect of Hizikia fusiformis Ethanol Extract and Its Fractions vol.22, pp.7, 2012, https://doi.org/10.5352/JLS.2012.22.7.889
  8. Physiological Activities of Hot Water Extracts from Ecklonia cava Kjellman vol.20, pp.11, 2010, https://doi.org/10.5352/JLS.2010.20.11.1675
  9. Inhibitory Effects of Solvent Extracts from Seven Brown Algae on Mutagenicity and Growth of Human Cancer Cells vol.16, pp.7, 2006, https://doi.org/10.5352/JLS.2006.16.7.1080
  10. A Study on Utilization and Consumption of Seaweeds in Some Regional Residents vol.31, pp.5, 2015, https://doi.org/10.9724/kfcs.2015.31.5.605
  11. Evaluation of In-vitro Anticoagulation Activity of 35 Different Seaweed Extracts vol.20, pp.11, 2010, https://doi.org/10.5352/JLS.2010.20.11.1640
  12. Antioxidant Activity and Cytotoxic Effect of an Ethanol Extract from Seoritae vol.27, pp.3, 2011, https://doi.org/10.9724/kfcs.2011.27.3.001
  13. Whitening effects of 4-hydroxyphenethyl alcohol isolated from water boiled with Hizikia fusiformis vol.23, pp.2, 2014, https://doi.org/10.1007/s10068-014-0076-6
  14. Optimum Reaction Condition of Enzymatic Hydrolysis for Production of Reducing Sugar from Enteromorpha intestinalis vol.30, pp.2, 2015, https://doi.org/10.7841/ksbbj.2015.30.2.53
  15. Effect of Hizikia fusiforme Extracts on Antioxidant Enzyme Activity and Vitamin E Concentration in Rats vol.40, pp.11, 2011, https://doi.org/10.3746/jkfn.2011.40.11.1556
  16. Effect of Ecklonia stolonifera Extracts on Bone Turnover Markers in Ovariectomized Rats vol.39, pp.12, 2010, https://doi.org/10.3746/jkfn.2010.39.12.1769
  17. Antimicrobial Activity against Food Hazardous Microorganisms and Antimutagenicity against Salmonella serotype Typhimurium TA100 of an Ethanol Extract from Sanguisorba officinalis L. vol.27, pp.4, 2011, https://doi.org/10.9724/kfcs.2011.27.4.017
  18. Induction of Growth Inhibition and Apoptosis in Human Cancer Cells by a Brown Algae Extract vol.26, pp.5, 2016, https://doi.org/10.5352/JLS.2016.26.5.555
  19. Effect of Pretreatment Method on Lipid Extraction from Enteromorpha intestinalis vol.29, pp.1, 2014, https://doi.org/10.7841/ksbbj.2014.29.1.22
  20. Antimicrobial and Antioxidant Activities of Extracts of Marine Green-algae Enteromorpha intestinalis vol.29, pp.2, 2014, https://doi.org/10.7841/ksbbj.2014.29.2.92
  21. Antioxidant Effect and Tyrosinase Inhibition Activity of Seaweeds Ethanol Extracts vol.42, pp.12, 2013, https://doi.org/10.3746/jkfn.2013.42.12.1893
  22. Anti-Diabetic and Anti-Inflammatory Potential of the Edible Brown AlgaHizikia Fusiformis vol.39, pp.4, 2015, https://doi.org/10.1111/jfbc.12138
  23. Evaluation of Antioxidant and Nitrite Scavenging Activity of Seaweed Extracts vol.21, pp.4, 2011, https://doi.org/10.5352/JLS.2011.21.4.576
  24. Effect of Solvent Extracts from Sargassum hemiphyllum on Inhibition of Growth of Human Cancer Cell Lines and Antioxidant Activity vol.17, pp.11, 2007, https://doi.org/10.5352/JLS.2007.17.11.1533
  25. Lead Adsorption by Carboxylated Alginic Acid and Its Application in Cleansing Cosmetics vol.43, pp.5, 2010, https://doi.org/10.5657/kfas.2010.43.5.400
  26. Quality Characteristics of Sulgidduk Added with Hizikia fusiformis Powder vol.27, pp.6, 2011, https://doi.org/10.9724/kfcs.2011.27.6.723
  27. Quality Characteristics of Jeolpyun with Hizikia fusiforme Powder vol.25, pp.1, 2012, https://doi.org/10.9799/ksfan.2012.25.1.196
  28. Analysis of Antibacterial Activity against Food Spoilage and Food-borne Pathogens and Cytotoxicity on Human Cancer Cell Lines of Extracts from Pericarp and Seed of Vitis coignetiea vol.28, pp.2, 2012, https://doi.org/10.9724/kfcs.2012.28.2.175
  29. 해조류 효소가수분해물질로부터 정제한 저분자 Peptide의 기능성 vol.34, pp.8, 2005, https://doi.org/10.3746/jkfn.2005.34.8.1124
  30. 소라에서 분리한 Vibrio균으로 제조한 다시마 Single Cell Detritus(SCD)의 품질특성 vol.35, pp.5, 2005, https://doi.org/10.3746/jkfn.2006.35.5.606
  31. 참곱슬이(Plocamium telfairiae) 추출물의 암세포 성장억제 효과 vol.16, pp.4, 2006, https://doi.org/10.5352/jls.2006.16.4.659
  32. 감마선 조사에 의한 문어 자숙액 에탄올 추출물의 생리활성 개선 vol.36, pp.12, 2007, https://doi.org/10.3746/jkfn.2007.36.12.1612
  33. 갱년기 유도 흰쥐에서 감태 추출물이 골 대사 지표물질의 변화에 미치는 영향 vol.19, pp.12, 2005, https://doi.org/10.5352/jls.2009.19.12.1841
  34. 35종 해조류 추출물의 병원성 세균 및 Candida sp. 진균에 대한 항균 활성 평가 vol.40, pp.2, 2005, https://doi.org/10.4014/kjmb.1203.03005
  35. Promotional effects of Sargassum fusiforme fractions on hair growth via in vitro and in vivo models vol.15, pp.2, 2014, https://doi.org/10.12729/jbr.2014.15.2.072
  36. 짝잎모자반(Sargassum hemiphyllum) 추출물의 항산화 효과 vol.45, pp.2, 2005, https://doi.org/10.4014/mbl.1609.09001
  37. Antioxidant Activities and Quality Characteristics of Cracker with Ecklonia stolonifera vol.35, pp.1, 2005, https://doi.org/10.9724/kfcs.2019.35.1.20