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LARGE DEVIATION PRINCIPLE FOR DIFFUSION
PROCESSES IN A CONUCLEAR SPACE

NHANSOOK CHO

ABSTRACT. We consider a type of large deviation principle ob-
tained by Freidlin and Wentzell for the solution of Stochastic dif-
ferential equations in a conuclear space. We are using exponential
tail estimates and exit probability of a Ito process. The nuclear
structure of the state space is also used.

1. Introduction

The large deviation principle(LDP) for stochastic differential equa-
tions(SDEs) in infinite dimensions has been considered by many au-
thors. Xiong [13] and Kallinapur and Xiong [7] consider the random
fields driven by a Gaussian white noise in space-time and derive the
large deviation results. Peszat [11] considers an LDP in a Hilbert space
and Marquez-Carreras and Sarra [8] deal an LDP for mild solutions to a
perturbed stochastic heat equation with an worthy martingale measure.

We are going to consider an LDP for a strong solution to an SDE in
S’(R?). Here S'(RY) is the dual of Schwartz space S(R?) which is the
space of infinitely differentiable functions with compact support. We
leave it in our next paper to set an LDP for a mild solution in this
conuclear space. Since S'(RY) is neither a Hilbert space nor a metric
space, we need to reduce that space onto a Hilbert space.

Recall that if {u.} is a family of probability measure on a Polish space
P with metric p, then pu. is said to have an LDP with rate functional
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I : P — [0,00], which is a lower semi-continuous function such that the
sets
K(ry={zeP:I(z)<r}, r>0

are compact and I satisfies the following:
(L1) for each open set O C P

limiélf 2¢% log 11 (0) > —inf{I(x) : z € O},
(L2) for each closed set C C P

lim sup 2¢? log 1 (C) < —inf{I(z) : z € C}.

e—0

Instead of directly trying to show the above inequalities, we will fol-
low a reformulated equivalent form of the so-called Freidlin-Wentzell
exponential estimates.(see [2])

(L1") Vz € P, ¥§ > 0 and Vv > 0 Jep such that Ve € (0, ]

(z) +7

I
pely : ply.2) < 8) > exp{——5 5},

(L1") ¥r, ¥§ > 0 and Vv > 0 Jeg such that Ve € (0, €]

T—’Y}.

pe{y : p(y, K(r)) 2 8} < exp{——

Let (2, F, P) be a probability space with a rigid-continuous increasing
family F = (F;)¢>0 of sub-o-fields of F each containing P —null sets.

Let W(t) be a standard S’(R%)—valued Wiener process, i.e., it is a
Wiener process with

(1.1)  Eexp(iW(t)[¢€]) = exp —t(|£[3/2), for all £ € S(RY),
where | - |g is the usual Ly~norm in R¢. Thus the covariance functional

Q of W (t) is given by @ = I.
We consider the following perturbed stochastic differential equations:

(1.2)  dXS(t) = B(t, X<(t))dt + G(t, X<(£))dW (t), X°(0) =z,

where
B:R* x 8'(R%) — S'(R%)
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and

G: R* x §'(R%) — L(S'(R%),S'(RY))
are two measurable functions, and L(B,C) denotes the space of operators
from B into C.

The case of Gaussian perturbations with G being constant was solved
by Smolenski, et al.[9]. You may refer a short history on this subject to
[11).

Under different sets of conditions, (1.1) has strong or mild solution.
We define a strong solution of (1.1) as an S’(R%)-valued process X (t),
t € [0, T)], which takes values in D(A) N D(G) and P a.s.,

(1.3)
X(t)==x +/0 B(s, X¢(s))ds +€/0 G(s, X¢(s))dW (s),
X¢(0) =z € S'(RY).

SDEs of the type (1.3) have been studied by several authors. For
instance, Kallianpur, Mitoma and Wolpert [3], Kallianpur, et al.[6], and
Walsh [12] have researched the linear and quasilinear equations.

The existence and uniqueness of solution to equation(1.2) is well
known, which is stated in the next section. It is also known that under
some weak conditions there exist some Hilbert spaces which are embed-
ded in 8’(R?) such that X (t) has regular versions in these Hilbert spaces
for0<t<T.

Now, we consider the following deterministic problem.

(1.4) -3; = B(t,2) + Gt 2)y, 2(0) =z.

Let H be a Hilbert space with a norm || - ||g. We denote Hr =
T T
L?(0,T;H), T >0;{¢p € H: fo lv||?ds < oo} and ]1/)|$_£T = fo 1% ds.
For 1 € Hr, the strong solution z¥ satisfies the following deterministic
equaion:

t t
2¥(t,x) = :L‘+/ B(s,zw)ds-l-/ G(s,2¥)(s)ds.
0 0
Also, let I: C([0,T); H) — [0, 00] be given by
I(z) = inf{[9f3,, : 2 = 2¥(,2)},
where I(z) depends on x and T. And set
K(r)={2zeC(0,T|;H): I(z) <r}, r>0.

This I(z) is our desired rate function.
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2. Preliminaries

Let S(R?) be the Schwartz space on R? consisting of C* functions
which together with all their derivatives vanish at infinity faster than any
power of |z]. S(R?) is a separable Frechet space whose topology is given
by the following increasing sequence {| - [,;p = 1,2,...} of Hilbertian
norms;

|¢>l12, = /(S”(b)zds, where S¢ = |z|%¢ — A¢.

Let S, denote the completion of S(R?) with respect to the norm | - |,.
For each p there exists ¢ > p (in fact, ¢ > p+ g) such that the canonical
inclusion from S, into Sy, is a Hilbert-Schmidt operator. That is |-|, <ms
[l

Let S'(R?) and S_,, denote the dual spaces of S(R?) and S, respec-
tively. Let |- |, denote the norm on S_,. In fact we have So = La(R%)
and the following continuous inclusions

N2, =S(RY) €8, CS, CS TS, CS_g CS'(RY)=U2,5,.

It is known that (e.g. see [1] or [12]) there exists a sequence {§;; j =
1,2....} in S(R?) such that {£;} is a CONS for Sp and is a complete
orthogonal system in S, for any p, p = 0, 1, 2.... For each positive integer
p, let £P) =|¢;|-1¢;. Then {€P);j > 1} is a CONS for S,.

Define 6, to be the isometric linear operator

Op,:5_p—Sp

such that Opfj(-"p ) = fj(-p ) for all j > 1. For each p the restriction of 6, to

S(R?) is a continuous linear operator from S(R?) into itself.
Now, we introduce a set of assumptions and state a theorem from [13]
on the existence and uniqueness of solution of SDE (1.2).

CoNDITION (S). For any T > 0, there exists pg = po(T') > 0 such
that for any p > po we can find ¢ = q(p) > p and K = K(p,q) €
L'([0,T)) satisfying the following conditions;

S1) (Continuity) B(t,-)|s_, : S—p — S—q and G(t,-)|s_, : S—p —

L(S_p,S-p) are continuous for all t € [0,T).
S2) (Coercivity) For all t € [0,T] and £ € S_,, we have

2B(t,€)[0p8] < K(t)(1 + [¢]2,)-
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S3) (Growth) For allt € [0,T] and £ € S_,, we have
1Bt )12 + Gt Ls_, s,y < KO+ E12,).
S4) (Monotonicity) For all t € [0,T] and &,&2 € S_p,, we have
2<B(ta 51)_B(ta 52)a &1 - 62)-‘1

+IG @, &) - Gt &)l s .50
<K(t)(J61 - &[2,)-

S5) For allt € [0,T) and € € S_,, we have

IGEONLs_,.s_,) < K@)

THEOREM 2.1. [13] Suppose B and G satisfy Condition S1)-S4).
Then the S'(R%)—valued Stochastic differential equation (1.2) has a
unique solution X. Moreover, if X(0) € S_y, and p; > pg V ro such
that the inclusion map from S(_p,vr,) into S_p, is a Hilbert-Schmidt
operator, then X|jg 1) € S—_p, a.s. and

E[ sup |X(t)]%,,] < oo.
0<t<T
This theorem implies that we can regard the solution process asa S_,-

valued process for sufficiently large p. This kind way of regularization is
also used in [3].

3. Large deviation theorem

Let B and G satisfy Condition (S) and we consider the following
strong solution of (1.2):

t

t
(3.1)  X(t) = X(0)+ / B(s, X¥(s))ds + ¢ / (s, X<(5))dW (5).
0 0
For 9 € Hr, let 2¥ satisfy the following deterministic equaion:

Zd) = t S th S S t 21/) S .
(t)=c+ /0 B(s, 2% (s))ds + /0 G(s, 2% (s)yb(s)ds

The following theorem is an extension of the exit probability esti-
mated by Chow and Menaldi [1] for Ito process in S’(R%).
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THEOREM 3.1. Assume that (3 is a predictable L(S_p,S_,)— valued
process and there exists a constant | < oo such that

T
/0 HB(S)“%(s_p,s_p)dS <, P — almost surely.

Then for all r > 0 one has

(3.2) {P / Bls)dW (s

PROOF. Let Z(t fo ) and {&; : j > 1} be a CONS for

So. Let §(p) 1€l 1{ Then {§ : > 1} forms a CONS for S,. For
any j > 1 we have

Z(t)[eP) = Z / $)E)EP 1AW (5) &),

Apply the Ito formula to get

(Z(1)[EP)? z / 22(5)[€P](B ()66 [EP)aW (s) €]

(3.3) " /0 18(s) 167 2ds,
where * denotes the adjoint of 5. (Note that 8,Z(s) = 72, Z(s)[6

Py

Hence if we sum up the equation (3.3) over j we obtain

—22 / $)€0) [0y Z(5)]dW (3) (6]

+/0 1B (s_,.5_,)ds-

For the following estimations let

oa(z)=(1+ )\m)%, for any A\, x € Ry.
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Also for convenience, we abuse some notations as |- |, = || - || and

I HZL(s,p,s_p): - lle.
We again apply the Ito formula to (3.3), then

34 ez
=143 [ 2Bl

k=1"0 2

Y / 651 (12(5)P)(B(s)x) 0,2 (5))]dW ()]
k=1

- 33 [ 4 1268 6,2()l3ds

T /0 65 (12(5)|12)1B(s)* (B Z(5)) [2ds

¥ [ o2 (12(9)P)18(5)" 6, (2(s))2ds).

0

Note that ¢3'(2) < 1 and 6, is an isometry from S_,, into S,.
For every A € R, let

(3.5)
77?—/\2 / 83 (12(6) ) (B(5)6e) B (2(5))]aW (s)l
St / 632(12()1P)1B(5)" 6,2 (5)) s,
Then
120) 2
36) < 1+ llﬂlsiﬂi“;(lfl(lQ)”Zdw-;—Hn? as. Vt € [0,T]

IA

A
1+§/ Hﬂ(s)||%ds+§l+nt>‘_<_1+?7t)‘+)\l.
0

Let Z* = exp{n;'} for every real \. Then Z} is a local martingale and
it follows easily from the Ito formula that EZ; 5 = 1. Hence using Doob’s



388 Nhansook Cho

martingale inequality, we have
P{ sup |Z(s)|-p 27}
0<s<t

(3.7) < P{sup 6a(1Z(s)[2,) = (1+2r%)%)

< P{sup Z} > exp{(1+Ar?)7 —1— A}
0<s<t
< exp{—(14+M?)7 +1+ Al}.
If r2 > 2I then taking )\ = 213452 we obtain the desired bound (3.1). If
r? < 21, then 3exp(= ) > 1. Thus (3.1) holds for any r > 0. O

From now on, Hr is L*(0,T : S_p) and [¢|3, = fOT 9| ,ds

THEOREM 3.2. (Lower bound) Under the condition (S), VT > 0, VI >
0, Vd > 0, Vy > 0, there exists ¢g > 0 such that Ve € [0, ¢g] and Vi € Hrp
satisfying |¢|31T < I, we have for any sufficiently large p

2
(3.8) P { sup |X5(t,3:) _ z”b(t,m)|_p < 5} > exp {_ "‘/)'HT;‘ 7} .
0<t<T 2

PrROOF. Let I > 0,7 > 0,6 > 0 and ¥ € Hy satisfying |¢|n, < L.
Define

We(t) = W(t) - l/tdz(s)ds, t<T.
€ Jo

According to the Girsanov theorem, W* is a cylindrical Wiener process
on the probability space (€2, F, P¢), where

dP r
Tpe = X p{——/ Y(s)W(ds) -—2—2 [9(s) ipds}.

Note that P <« P¢.
Now, consider the following:

XE(t) — 2% (t) < X(0) — 2%(0)

ffBuX%»—M&W®WS

+e/ G(s, X(s))dW*(s)

/ G(s, X (s (s)ds—/o G(s, 2% (s))¥(s)ds,
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X — 2 (1)) < K /0 IX(s) — 2(5)]|_p ds

e /0 G, X< ()W )

-p
where K is a constant. By Condition S and the Gronwall inequality,
there exists a constant K> such that

sup |X(t) — 2¥(t)|_p < Ko sup
0<t<T 0<t<T

6/0 G(s, X (s))dW<(s)

-p
Let [ € (0,1), and

t

(3.9) = 0 G(s, X¢(s))dW<(s)
{ sup |X€(t,x) — 2¥(t,x)|_p S(S}
0<t<T

{ / w(t>de<t>|<—}

Then

-
P{A(c)} = E° [j}; A(e)} > exp {— ’w‘;j : } P{LA(e) N B(e)}.

We also want to show that P<{A(e) N B(e)} — 1 uniformly with respect
to 2 and ¥ on bounded sets. Now,

PUAONBE} 2 1P { s 66ty > o | - PO}

0<t<T K,

Note that by Condition S(5), there exists a constant [y such that

T
(3.10) | 166, X @) ds <o

Now Theorem 3.1 shows that



390 Nhansook Cho

and P¢{B°(e)} — 0 as e — 0. Hence, we get the lower bound. 0O

Next, we are going to consider the upper bound. We adapt the fol-
lowing lemma and proposition for the strong solution to (1.2) from the
originals for a mild solution in a Hilbert space [11]. The proof for the
Theorem 3.5(Upper Bound) is intrinsically same with that of Theorem
1.3 in [11).

LeMmMA 3.3. Vr >,3M > 0 such that Ve € (0,1] one has

(3.11) P{ sup IXE(t)I-pEM} Sexp{";g}

0<t<T

Proor.
1 X(t)%,
2

< k1 + ks </Ot IB(s, X(s)) 2_pds> te /Ot G(s, X<(s))dW (s)

—p
2

<k +k /OtK(t)(l +[Xe(s)[2,)ds + € /Ot G(s, X(s))dW (s)

2

-pP

<y + ks ( /O " KWIX(s) ipds) ny /O G, X¥(3))dW (s)

3
—-p

where k;, i = 1,2, 3... are some constants from (S2) and (S3). By Gron-
wall’s inequality there exist k4 and k5 such that
2
!
-p

2

sup | X<(t)|2, < (k1+ sup €
0<t<T 0<t<T

/ " G, X4()) AW (s)
0

< ks+ ks sup €
0<t<T

/ (s, X¥(5))dW (s)
0

-Pp

Let M > 0 be such that M? > ks.

P{ s X012 M)

S /0 G(s, X*(s))dW (s)

o 1 /M2 — ks
= EPIT @ \ kel ’

SP{ sup €
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by (3.9) and Theorem 3.1. Hence, for any given r, we can choose M

atiaful — MZ—ks
satisfying r = Thile B

PROPOSITION 3.4. Under the condition (S), Va > 0,Vd > 0, Vi €
Hr, there exists eg > 0 and by > 0 such that Ve € (0, €] we have

(3.12)
P < sup |X"‘(t)—zw(t,x)‘_p25, sup Sb}
-p

0<t<T 0<t<T
a

Sexpy——¢-
€

PRrROOF. Let

N (e, b)

W (t) — /0 (s)ds

= { sup | X<(t) — z¢(t,a:)|_p >0, sup |eW(t) — /tw(s)ds
0

0<t<T 0<t<T

<sf
-p

and ¥ € Hp. W€ and P¢ be defined as in the proof of Theorem 3.2. For
A >0 set

T
M(e,)) = { | vwave —3} .
0 €
Obviously, for an arbitrary A > 0, we have
(3.13) P{N (e, b)} < P{N(e,b) N M(e, \)} + P{ME(e, \)}.

By Theorem 3.1, we have

2
(3.14) P{M*(e,\)} < 3exp {—F"IAW} .
Note that
(3.15)
PN (e,b) N M(e, \)} = E* [%2 L N(e,b) N M(e, )\)J
[¥13,

gexp{§+ o }PG{N(e,b)}.



392 Nhansook Cho

Since under P¢, X°€ is the unique solution of the SDE

dXC(t) = B(t, X<(t))dt + eG(X(£))dW*(t), X°(0) =z,

where B(t,z) = B(t, z) + G(z)¥(t), we have

P {N(e,b)} =P { sup ‘X’E(t) - 2%(t,2)| > 6, |eW ()] < b} ,

0<t<T
where X (t,z) is the solution of the SDE
dX<(t) = B(t, X(t))dt + eG(X(t))dW<(t), X(0)==z.
Using the same argument as in the proof of Theorem 3.2 we get

PN (e, b)}

<P« sup
0<t<T

SP{ sup

e /0 G(X(s,2))dW (s)

)
, sup |eW(t)|*p}

>
—p Cy o<i<T
)

/0 G(X%(s,z))dW (s)

Q

- }
0<t<T -p €Ly
(52
f3exp{‘m}’

where C} is a constant and [y is a constant defined as (3.9). Hence for
each ag > a we can find b > 0 such that

(3.17) P<{N (e, b)} Sexp{—%}.

Combining (3.13) to (3.17), we have

A2 2X\ + |2, — 24
P{N(G’b)}§3eXP{—W}+exp{ thZT a}‘

If we first choose A and then a we get (3.12). O

THEOREM 3.5. (Upper bound) Under the condition (S), VI > 0, Vy €
S_p, V6 > 0, VR > 0, Vr > 0, Vy > 0, there exists g > 0 such that
Ve € S, i |z —yl—p < R and Ve € (0, ¢y] we have

P {djStC([O,T];SAp) (Xe(" :E)»IC(T)) Z 6} < exp {~T2;2’y} '



o

[10]
[11]
(12]

13]

Large deviation principle for diffusion processes in a conuclear space 393

References

P. Chow and J. Menaldi, Fzxponential estimates in exit probability for some
diffusion process in Hilbert space, Stoch. Stoch. Rep. 29 (1990), 377-393.

M. Freidlin, Random perturbations of reaction diffusion equations: the quasi-
deterministic approach, Trans. Amer. Math. Soc. 305 (1988), 665-697.

G. Kallianpur, I. Mitoma, and R. Wolpert, Diffusion equations in duals of nu-
clear spaces, Stoch. Stoch. Rep. 29 (1990), 1-45.

G. Kallianpur and V. Perez-Abreu, Stochastic evolution equations driven by a
nuclear space-valued martingales, Appl. Math. Optim. 17 (1988), 237-272.

G. Kallianpur and J. Xiong, Diffusion approzimation of nuclear space-valued
stochastic differential equations driven by Poisson random measures, Ann. Appl.
Probab. 5 (1995), 493-517.

G. Kallianpur, J. Xiong, G. Hardy, and S. Ramasubramanian, The existence and
uniqueness of solutions of nuclear space-valued stochastic differential equations
driven by Poisson random measures, Stoch. Stoch. Rep. 50 (1994), 85-122.

G. Kallianpur and J. Xiong, Large deviations for a class of stochastic partial
differential equations, Ann. Probab. 24 (1996), 320-345.

D. Marquez-Carreras and M. Sarra, Large deviation principle for a stochastic
heat equation, Electron. J. Probab. 8 (2003), 1-39.

W. Smolenski, R. Sztencel, and J. Zabezyk, Large deviation estimates for semi-
linear stochastic equations, Proceedings IFIP Conference on Stochastic Differ-
ential Systems, Eisenach{Lecture notes Control Inf.) 1236 (1986), 218-231.

S. Peszat, Exzponential Tail estimates for infinite-dimensional stochastic convo-
lutions, Bull. Polish Acad. Sci. Math. 40 (1992), 323-333.

, Large deviation principle for stochastic evolution equations, Probab.
Theory Related Fields 98 (1994}, 113-136.

J. Walsh, An introduction to stochastic partial differential equations, Springer
Lecture notes in mathematics 1180 (1986), 265-439.

J. Xiong, Large deviations for diffuston processes in dual of nuclear spaces,
Appl. Math. Optim. 84 (1996), 1-27.

Department of general education
Hansung University
Seoul 136-792, Korea

E-mail: ncho@hansung.ac.kr



