Commun. Korean Math. Soc. 20 (2005), No. 2, pp. 299-310

RANDOM FIXED POINT THEOREMS AND
LERAY-SCHAUDER ALTERNATIVES FOR U MAPS

Ravi P. AcaRwAL AND DoNAL O’REGAN

ABSTRACT. This paper presents new random fixed point theorems
for U4F maps and new random Leray-Schauder alternatives for UF
type maps. Our arguments rely on recent deterministic fixed point
theorems and on a result on hemicompact maps in the literature.

1. Introduction

The theory of random fixed points plays a very important role in
probabilistic analysis, and a systematic study was initiated in the 1950’s
by the Prague school of probabilists. In this paper we present in Section
1 new random fixed point theorems for U type maps and in Section
2 we present a variety of random Leray-Schauder alternatives for UF
type maps. All the results are new and contain as special cases most
of the well known random fixed point theory in the literature (see [5, 8,
11 12, 15, 17] and the references therein).

Next in this section we present some preliminary results which will be
needed. Let (£2,.4) be a measurable space and C a nonempty subset
of a metric space X = (X,d). Let 2¢ denote the family of nonempty
subsets of C and CD(C) the family of all nonempty closed subsets of
C. A mapping G : Q — 2% is said to be measurable if

GHU)={weQ: Gw)NU #0} e A

for each open subset U of C. A mapping £ : Q@ — C is called a
measurable selector of the measurable mapping G : Q@ — 2C if ¢ is
measurable and &(w) € G(w) for each w € . A mapping F : Q x
C — 2% is called a random operator if, for any fixed z € C, the map
F(.,z):Q — 2% is measurable. A measurable mapping ¢ : Q2 — C is
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said to be a random fixed point of a random operator F: Q x C — 2%
if ((w) € F(w,é(w)) for each w € Q. Let Pg(X) be the bounded
subsets of X. The Kuratowskii measure of noncompactness is the map
a: Pg(X) — [0,00) defined by

a(A)=inf{e>0: ACUL, X; and diam (X;) <¢€};

here A € Pg(X). Let S be a nonempty subset of X, and for each
z € X define d(z,S) = infyes d(z,y). Let H: S — 2X. H is
called (i). countably k-set contractive (k > 0) if H(S) is bounded
and a(H(Y)) < ka(Y) for all countably bounded sets Y of S; (ii).
countably condensing if H(S) is bounded and a(H(Y)) < oY) for
all countably bounded sets Y of S with a(Y) # 0; (iii). hemicompact
if each sequence (z,)52; in S has a convergent subsequence whenever
d(zn, H(zy)) — 0 as n — oo.

A random operator F : Q@ x C — CD(X) is said to be continuous
(countably k-set contractive etc.) if for each w € (2, the map F(w, .):
C — CD(X) is continuous (countably k—set contractive etc.).

Next we state a well known result of Tan and Yuan [15].

THEOREM 1.1. Let (9, A) be a measurable space and Z a nonempty
separable complete subset of a metric space X = (X,d). Suppose the
map F:Qx Z — CD(X) is a continuous, hemicompact random oper-
ator. If F has a deterministic fixed point then F has a random fixed
point.

REMARK. A single valued map ¢ : 2 — X is said to be a determin-
istic fixed point of F' if ¢(w) € F(w, ¢(w)) for each w € Q. In [5], we
established the following convergence result.

THEOREM 1.2. Let (X,d) be a Fréchet space, D a closed subset
of X and F : D — 2% a countably condensing map. Then F is
hemicompact.

Recently [9] another version of a random operator F: Q x Z — 2X
was considered by Gorniewicz. Let X be a separable metric space, €2
a complete measurable space, and Z a closed subset of X. A map
F:Qx Z — 2X with compact values is said to be a random in the
sense of Gorniewicz operator if

(i) F is product measurable and

(ii) F(w, .) is upper semicontinuous for every w € Q
hold. The following result is taken from [9, p.156].

THEOREM 1.3. Let X be a separable metric space, (2, A) a com-
plete measurable space and Z a closed subset of X. Suppose the map
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F :Q x Z — 2% has compact values and is a random in the sense of
Gorniewicz operator. If F' has a deterministic fixed point then F' has
a random fixed point.

In view of Theorem 1.1 and Theorem 1.3 it is easy to use well known
fixed point theory to establish random fixed point theory. Before we do
this we need to describe these deteministic fixed point theorems. Let
X and Y be subsets of Hausdorff topological vector spaces E; and Fs
respectively. We will look at maps F : X — K(Y); here K(Y) denotes
the family of nonempty compact subsets of Y. Wesay F: X — K(Y) is
Kakutaniif F is upper semicontinuous with convex values. A nonempty
topological space is said to be acyclic if all its reduced Cech homology
groups over the rationals are trivial. Now F : X — K(Y) is acyclic if
F' is upper semicontinuous with acyclic values. F: X — K(Y) is said
to be an O’Neill map if F' is continuous and if the values of F' consist
of one or m acyclic components. (here m is fixed)

Given two open neighborhoods U and V of the origins in E; and
E> repectively, a (U, V)-approximate continuous selection [6] of F :
X — K(Y) is a continuous function s: X — Y satisfying

s@)e (Flz+U)NX]+V)NY forevery z € X.

We say F : X — K(Y) is approzimable if it is a closed map and if
its restriction F|x to any compact subset K of X admits a (U,V)-
approximate continuous selection for every open neighborhood U and
V' of the origins in E; and FE» repectively.

For our next definition let X and Y be metric spaces. A continuous
single valued map p:Y — X is called a Vietoris map if the following
two conditions are satisfied:

(i) for each = € X, the set p~!(x) is acyclic

(ii) p is a proper map i.e. for every compact A C X we have that
p~1(4) is compact.

DEFINITION 1.1. A multifunction ¢ : X — K(Y) is admissible
(strongly) in the sense of Gorniewicz, if ¢ : X — K(Y) is upper semi-
continuous, and if there exists a metric space Z and two continuous
maps p:Z — X and ¢: Z — Y such that
(i) p is a Vietoris map and
(ii) ¢(z) = q(p~!(z)) for any z € X.

REMARK 1.1. It should be noted [10, p.179] that ¢ upper semicon-
tinuous is redundant in Definition 1.1.
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Suppose X and Y are Hausdorfl topological spaces. Given a class
X of maps, X(X,Y) denotes the set of maps F : X — 2¥ (nonempty
subsets of Y) belonging to X, and X, the set of finite compositions of
maps in X. A class U of maps is defined by the following properties:

(i) U contains the class C of single valued continuous functions;
(ii) each F' € U, is upper semicontinuous and compact valued;
(iii) for any polytope P, F € U.(P,P) has a fixed point, where the
intermediate spaces of composites are suitably chosen for each U.

DEeFINITION 1.2. F € UF(X,Y) if for any compact subset K of X,
there is a G € U.(K,Y) with G(z) C F(z) for each z € K.

Examples of U maps are the Kakutani maps, the acyclic maps, the
O’Neill maps, and the maps admissible in the sense of Gorniewicz.

For a subset K of a topological space X, we denote by Covx (K)
the directed set of all coverings of K by open sets of X (usually we
write Cov (K) = Covx (K)). Given two maps F, G : X — 2Y and
a € Cov(Y), F and G are said to be a—close, if for any « € X there
exists Uy € a, y € F(x)NU, and w € G(z) NUy.

By a space we mean a Hausdorfl topological space. In what follows
() denotes a class of topological spaces. A space Y is an extension space
for Q (written Y € ES(Q)) if for any pair (X, K) in Q with K C X
closed, any continuous function fy : K — Y extends to a continuous
function f: X — Y.

A space Y is an approzimate extension space for @@ (and we write
Y € AES(Q)) if for any o € Cov(Y) and any pair (X, K) in Q with
K C X closed, and any continuous function fy: K — Y, there exists a
continuous function f: X — Y such that f|x is a—close to fp.

DEFINITION 1.3. Let V' be a subset of a Hausdorff topological space
E. Then we say V is Schauder admissible if for every compact subset
K of V and every covering a € Covy(K), there exists a continuous
function (called the Schauder projection) 7, : K — V such that

(i) mo and i: K — V are a—close;
(if) 7o(K) is contained in a subset C C V with C € AES(compact).

If V € AES(compact) then V is trivially Schauder admissible. If
V' is an open convex subset of a Hausdorff locally convex topological
space F, then it is well known that V is Schauder admissible.

The following fixed point result was established in [4].
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THEOREM 1.4. Let V be a uniform space and assume V is Schauder
admissible. Suppose F € UF(V,V) a compact upper semicontinuous
map with closed values. Then F has a fixed point.

A nonempty subset X of a Hausdorff topological vector space E is
said to be admissible if for every compact subset K of X and every
neighborhood V of 0, there exists a continuous map h : K — X with
x—h(z) € V forall x € K and h(K) is contained in a finite dimensional
subspace of E. X is said to be g—admissible if any nonempty compact,
convex subset 2 of X is admissible. X is said to be ¢-Schauder
admissible if any nonempty compact, convex subset 2 of X is Schauder
admissible.

The following fixed point result was established in [2].

THEOREM 1.5. Let Q be a g—Schauder admissible, closed, convex
subset of a Hausdorff topological vector space E with xg € 3. Suppose
F e UF(Q,Q) is a upper semicontinuous map with cloised values and
assunie the following property holds:

(1.1) ACQ, A=7c({zo} U F(A)) implies A is compact.
Then F has a fixed point in Q.

Let (E,d) be a pseudometric space. For S C E, let B(S,¢e) = {z €
E: d(z,S) <€} for € > 0. The measure of noncompactness [7] of the
set M C E is defined by a(M) = inf Q(M), where

QM)={e>0: M C B(A,¢) for some finite subset A of E}.

Let F be a locally convex Hausdorff topological vector space, and let
P be a defining system of seminorms on E. Suppose F : S — 2F: here
S C E. Themap F is said to be a countably P-concentrative mapping
[7]if F(S) is bounded, and for p € P for each countably bounded subset
X of S we have ap(F(X)) < ap(X), and for p € P for each countably
bounded non- p-precompact subset X of S (i.e. X is not precompact
in the pseudonormed space (F,p)) we have op(F(X)) < ap(X); here
ap(.) denotes the measure of noncompactness in the pseudonormed
space (F,p). In this paper when we consider countably P-concentrative
maps it is worth remarking here that in fact the results hold if the maps
are countably condensing in the sense of [16, p.353, 356], so in particular
for countably condensing maps defined before Theorem 1.1.

The following fixed point result was established in [13].

THEOREM 1.6. Let 2 be a nonempty, closed, convex subset of a
Fréchet space E (Pisadefiningsystemofseminorms). Suppose F €
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UE($,Q) is a countably P-concentrative mapping. Then F' has a fixed
point in §).

The following fixed point results were established in [3].

THEOREM 1.7. Let Q be a ¢-Schauder admissible closed, convex
subset of a Hausdorff topological vector space E with xg € §2. Suppose
F € U5 (9Q,Q) is a upper semicontinuous map with closed values with
the following conditions holding:

(1.2) for any relatively compact, convex subset A of 2
' with co (F(A)) C A we have F(A) C co(F(A))

and
(1.3) ACQ, A=co({xo}UF(A)) implies A4 is compact.
Then F has a fixed point in Q.

THEOREM 1.8. Let Q be a g¢-Schauder admissible closed, convex
subset of a Hausdorff topological vector space E with z¢ € §). Suppose
F e UF(2,Q) is a upper semicontinuous map with closed values which
maps compact sets into relatively compact sets and assume (1.2) holds.
In addition suppose the following conditions are satisfied:

(1.4) ACQ, A=co({zo}UF(A)) with A=C
' and C C A countable, implies A is compact
(1.5) for any relatively compact subset A of (2 there
: exists a countable set B C A with B= A
and

(1.6) if A is a compact subset of 2 then @6(A) is compact.
Then F has a fixed point in ).

REMARK 1.2. If F is a Kakutani map then (1.2) is not needed [3]
in Theorem 1.7 and Theorem 1.8.

REMARK 1.3. If F : Q — 2% is lower semicontinuous then (1.2)
holds (see [3]).

First we obtain a random analogue of Theorem 1.4.

THEOREM 1.9. Let (2, A) be a measurable space, E a metric space,
X a Schauder admissible complete separable subset of E, F : {1 x
X — CD(X) a random continuous, compact operator with F(w, .) €
UF(X,X) for each w € ). Then F has a random fixed point.
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PRrROOF. Now [14] implies that F': @ x X — CD(X) is hemicompact
and Theorem 1.4 guarantees that F has a deterministic fixed point.
The result now follows from Theorem 1.1. O

THEOREM 1.10. Let (£2,.A) be a complete measurable space, E a
separable metric space, X a closed Schauder admissible subset of E,
F:Qx X — K(X) arandom in the sense of Gorniewicz compact
operator with F(w, .) € UF(X,X) for each w € Q. Then F has a
random fixed point.

ProoOF. The result follows from Theorem 1.3 and Theorem 1.4. O

We next obtain a random(in the usual sense) analogue of the other
fixed point theorems in this section (the random analogue of these the-
orems for operators random in the sense of Gorniewicz is left to the
reader).

THEOREM 1.11. Let (Q,.A) be a measurable space, E a metrizable
topological vector space, X a g-Schauder admissible closed convex com-
plete separable subset of E, xg € X, F: Q2 x X — CD(X) a random
continuous operator with F(w, .) € UF(X,X) for each w € Q. Also
assume the following properties are satisfied:

(1.7) { for egch w € 2, AC X with A=7%({z0} U F(w, A))
implies A is compact

and

(1.8) F:Qx X — CD(X) is hemicompact.

Then F has a random fixed point.

ProoF. The result follows from Theorem 1.1 and Theorem 1.5. [

THEOREM 1.12. Let (Q,.A) be a measurable space, E a Fréchet
space (P ade finingsystemofseminorms), X a nonempty closed convex
separable subset of E, F :  x X — CD(X) a random continuous
countably P-concentrative operator with F(w, .) € U¥(X, X) for each
w € . In addition assume (1.8) holds. Then F has a random fixed
point.

ProoF. The result follows from Theorem 1.1 and Theorem 1.6. O

REMARK 1.4. If in Theorem 1.12, F: O x X — CD(X) is arandom
continuous countably condensing operator (in the sense of the definition
before Theorem 1.1) then (1.8) is satisfied (see Theorem 1.2).
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THEOREM 1.13. Let (©2,.A) be a measurable space, E a metrizable
topological vector space, X a g-Schauder admissible closed convex com-
plete separable subset of E, o € X, F: Qx X — CD(X) a random
continuous operator with F(w, .) € UF(X,X) for each w € Q. Also
assume (1.8) holds and suppose the following property is satisfied:

(1.9) for each w € Q, AC X with A= co({zo} U F(w, A))
' implies A is compact.

Then F has a random fixed point.

Proor. The result follows from Theorem 1.1 and Theorem 1.7 (note
for each w € Q that F(w,.) : X — CD(X) is continuous so lower
semicontinuous). O

REMARK 1.5. One could also obtain the random analogue of Theo-
rem 1.8 (we leave the details to the reader).

2. Random Leray—Schauder alternatives

In this section we present random Leray-Schauder alternatives for
U type maps. First however we recall [1] (where we use the results in
[14]) some results for essential U maps in the deterministic situation.

Here E is a Hausdorff locally convex topological vector space, C is
a closed convex subset of E, U C C is convex, U is an open subset
of E, and 0 € U. Notice intc U = U since U is open in C. We will
consider maps F : U — K(C) (here U denotes the closure of U in C).
Throughout our map F : U — K(C) will satisfy one of the following
conditions:

(H1) F is compact;

(H2) if D CU and D C 2o ({0} U F(D)) then D is compact;

(H3) F is countably P-concentrative and E is Fréchet (here P is a
defining system of seminorms);

(H4) F islower semicontinuous and if D C U and D C co ({0}UF (D))
then D is compact; or

(H5) F' is lower semicontinuous, F' maps compact sets into relatively
compact sets, and if D C U, D C co({0}U F(D)) with K C D
countable and K = D then D is compact and in this case we also
assume (i). for any relatively compact convex set A of E there
exists a countable set B C A with B = A, and (ii). if Q is a
compact subset of F then €6 (Q) is compact.
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Fix i € {1,2,3,4,5}.

DEFINITION 2.1. We say F € LS'(U,C) if F € U*U,C) satisfies
(Hi).

DEFINITION 2.2. We say F € LSy, (U,C) if F € LSY(U,C) with
x ¢ Fx for z € OU; here OU denotes the boundary of U in C.

DEFINITION 2.3. Amap F € LSi; (U, C) isessentialin LS} (U, C)
if for every G € LSy;(U,C) with Gloy = Flay there exists z € U
with z € G(z).

THEOREM 2.1. Fix i € {1,2,3,4,5} and let E be a Hausdorff locally
convex topological vector space, C a closed convex subset of E, U C C

convex, U an open subset of E, 0 € U, F € LSY(U,C) and assume
the following condition holds:

(2.1) z ¢ ANFx forx € 8U and X € (0,1].

Thc(}}l) F is essential in LS’%U(U, C) (in particular F has a fixed point
in U).

REMARK 2.1. In (H4) and (H5), F lower semicontinuous can be
replaced by

(2.2)

for any relatively compact, convex subset A of U

with co(F(A)) C A we have F(A) C F(A).

Our first result is a random Leray—Schauder alternative for U type
maps.

THEOREM 2.2. Fix ¢ € {1,2,3,4,5} and let (2, A) be a measurable
space, E a separable Fréchet space, C' a closed convex subset of F,
U C C convex, U an open subset of E, 0€ U, F:QxU — CD(C) a
random continuous operator with F(w, .) € LS*(U,C) for each w € .
Also assume for each w € Q) that the following condition is satisfied:

(2.3) z ¢ AF(w,z) for all x € 8U and X € (0,1].
Finally suppose
(2.4) F:Q xU — CD(C) is hemicompact if i € {2,3,4,5}.

Then F has a random fixed point ¢ with {(w) € U for each w € .

REMARK 2.2. For the cases ¢ =4 and i = 5 note for each w € Q2
that F(w,.): U — K(C) is automatically lower semicontinuous since
F(w,.):U — K(C) is continuous.
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REMARK 2.3. For the case i = 3 if F' countably P-concentrative

is replaced by F' countably condensing (in the sense of the definition
before Theorem 1.1) then (2.4) holds when 7 = 3.

PrROOF. We know from (2.4) (or [15]if i = 1) that F : Q x U —
CD(C) is hemicompact. Fix w € © and notice Theorem 2.1 guarantees
that F(w, .) has a fixed point in U. As a result F has a deterministic
fixed point so Theorem 1.1 guarantees that F has a random fixed point
¢ with &(w) € U for each w € Q. This with (2.3) completes the
proof. O

From an application point of view it is of interest to allow our set
U in Theorem 2.2 to vary with w. Our next result was motivated by
the papers [8, 12]. We will consider the cases ¢ = 1 and ¢ = 3 and
our space E will be a Banach space, so in this situation when 7 = 3
countably P-concentrative means countably condensing (in the sense of
the definition before Theorem 1.1).

THEOREM 2.3. Let (2, A) be a measurable space, E = (E,|.|)
a separable Banach space, r :  — R measurable with r(w) > 0
for each w € Q and let Qpyy = {z € E : |z| < r(w)}. Sup-
pose FF: Q@ x E — CD(E) is a random continuous countably con-
densing (respectively, compactorcondensing) operator with F(w, .) €
UK (Qrw), E) for each w € (2, and assume for each w € § that the
following condition holds:

(2.5) x ¢ A\F(w,z) for all z € 0 Q) and X € (0, 1).
Then F has a random fixed point.

Proor. Fix w € Q. Let Ry : E — Q) be the continuous
retraction given by

_ [z r€Qrw
Ry(z) = { r(w) I—;—I’ |z| > r(w).

Let Hy(.)=F(w,.) and

G(w,z) = F(w, Ry(z)) for z € E.
Notice G(w, .) = HyoRy(.) so G(w, .) € UF(E, E) since U} is closed
under compositions. Also it is easy to check that G(w, .) : E — E is
countably condensing (respectively, compact or condensing); to see the

countably condensing situation notice if A is a countably bounded sub-
set of E with a(A) # 0, then since R,,(A) is countable and R, (A) C
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co(AU{0}) we have

a(G(w, A)) = a(F(w, Rw(4))) < o(Ruw(4)) < a(4) if a(Ru(4)) #0
and

a(G(w, A)) = a(F(w, Rw(4))) < a(Ru(4)) < a(4) if a(Ry(4)) =0.

Also a standard argument [12, p.1967] guarantees that G(.,z) is mea-
surable for each z € E. Asaresult G: Q x E — CD(FE) is a random
continuous operator with G(w, .) € US(E,E) for each w € Q. We
apply Theorem 1.12 (respectively, Theorem 1.9 or Theorem 1.11) to de-
duce that G has a random fixed point u i.e. u{w) € F(w, Ry(u(w)))
for each w € Q and u : Q@ — F is measurable. We now claim that
u(w) € Qpy) for each w € Q. If the claim is true then we are finished,
since if u(w) € Qppyy then Ry(u(w)) = w(w).

It remains to prove the claim. If the claim is false, then there exists
a wy € Q with |u(wy)] > r{wy). Let v(wn) = Ry, (u{w;)) and notice
u(wi) € F(wy, Ry, (u(w1))) ylelds

u(w)
u(w1)]
and A = L ¢ (0,1). This contradicts (2.5). O

lu(w1)]

v(wy) € AF(wy,v(wy)) with v(w;) = r(w;) € 0 Qr(wy)
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