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ON THE GENUS OF CERTAIN
DRINFELD MODULAR CURVES

CHANG HeEoN KiM* AND DAEYEOL JEON

ABSTRACT. We determine the genera of the Drinfeld modular curves
X A (t‘l) .

1. Introduction

Gekeler [1, 2] calculated genus formulas for some Drinfeld modular
curves(e.g. X (n), Xo(n)). Later, he obtained the same genus formulas
by viewing the Drinfeld modular curves as the quotient graphs of the
Bruhat-Tits building by congruence subgroups [3]. In this paper, we de-
termine the genera of the Drinfeld modular curves Xa(n)(See Theorem
2.) by adopting Gekeler’s former idea.

2. Some preliminaries

Let k be the rational function field Fo(T') over the finite field F,
and A = F¢[T]. Let ko be the completion of k at co = (%) and C
the completion of the algebraic closure of koo. The group GLy(ks) acts
on the Drinfeld upper half plane Q = C — ko, by the linear fractional
transformation.

Let I'(1) = GL(A) and A a subgroup of Fy. For n € 4, let
L(n) = {(£5) €T (25) =(39) modn}

Ta(m) = {(2}) eT(1)|c=0,a=1,d=a modn, ac A}
To(n) = {(2%)€T(1)]c=0 modn}.
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We let Y (1),Y(n),Ya(n),Yp(n) be the corresponding quotients of {2
by T'(1),I'(n),['a(n),Tg(n) respectively, and X (1),X (n),Xa(n),Xo(n) the
compactions by adding cusps. By abuse of terminology, the cusp of
infinity will be also denoted by oo.

Let n € A be given as

-
n= H piLa
1<i<s

where the p;’s are different monic primes. We further put ¢; := |p;| :=
|A/(pi)| . We will need some arithmetic functions related to n, i.e.,

em) = I ¢ '@-1)

1<i<s

em) = [[ & @+

1<i<s

Let Y be a complete nonsingular algebraic curve over C. Let G be a
finite group of automorphisms of Y and X = G\Y the quotient curve.
For a point Q of Y, let Gg be the stabilizer, Og the local ring at @ and
7 a local parameter. We define the i-th ramification group by

Goi={oe€Gglo*(f)=f mod 7r1+1 for all f € Og}
for each ¢ € Z>¢. Then we get the following tower of normal subgroups:
Go=Ggo>Gg1D - DGom={1}

for sufficiently large m. The covering Y — X is called tamely ramified
at Q if Gg1 = {1}, and wildly ramified otherwise. We define

ig(o) =sup{i|o € Ggi}+1,

where 0 € Gg — {1}. For the Euler characteristic e and the genus g, we
have the relation e = 2 — 2g. Also we get the Hurwitz formula

e(Y) =|Gle(X) - Y aq,

QeYy

where ag = Z ig(0).
o€Go—{1}
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We set the following notations:
G = {(‘g g) € GLy(A/n)|ad —bec € Fy}
T = {{24) €Gle=0}
U = {(2%)e€Glc=0,a,deF;}
En = {(2%)eGla=1,c=0,de A}
E = {(28)eGla=d=1,c=0}.
Throughout this paper, ¢ denote the order of A. By a simple calculation,

we know that the order of G (resp. T,U, Ea, E) is p(n)e(n)|n| (resp.
e(n)[n], (¢ — 1)In[, 8[nl, [n]).

The above group G is the Galois group of the covering X (n) — X (1),
ie., G is isomorphic to the quotient group I'(1)/I'(n)F;. Gekeler [1] has
shown that the above covering is ramified only at the elliptic points
and cusps. Moreover, it is tamely ramified at the elliptic points, and the
second ramification group is trivial for any cusp. Then applying Hurwitz
formula to the covering X (n) — X (1), we can get the following result.

THEOREM 1. (Theorem 3.4.8, [1]) The genus of the Drinfeld modular
curve X (n) is given by

g(X(n)) =1+ (In] — g — 1)p(n)e(n).

1
¢ —1
3. A genus formula for Xa(n)

To obtain a genus formula for Xa(n), we will apply Hurwitz formula
to the covering X (n) — Xa(n) with the Galois group Fa. First of all
we investigate the ramification at cusps. Note that G, = U. Thus the
number of cusps of X(n) is equal to the order of G/U which denotes
the set of left cosets. Let {7} be a representative system of G/U. Then
UY(=~U~!) is the fixed group of another cusp of X (n). Let Q be the
cusp corresponding to . By Theorem 1, one can get the following:

ag = Z iQ(U)= |EAﬁU7|+|EAﬂE’YI—2.
UEEAQ—{I}

Let {a}(resp. {B}) be a representative system of G/T'(resp. T/U =
(A/n)*/F2). Then {af} is a representative system for G/U, and U af —
(UP)* = U®, because U is normal in 7. Thus it suffices to compute
the order of Ea N U®. The system {a} can be chosen componentwise,
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ie, o = (ag), 1 <4 < s, where {o;} is a representative system of
GLy(A/p]*). We will take {ai} as

The element ( ! 0) will be called type 1, the other called type 2. Observe
that GLy(F,) is imbedded in GLa(A/n) diagonally. So (24) (€ U) can
be viewed as ((2%)) in GLy(A/n). Then

0

1

M @D ED D) = (i s

and

@ (28) (1) (5%) (1) (}5)
For u = (u;) € A/n, let v;(u) = v(u;) be the order of zero of u;, i.e.,

vz(u) = l<7“,-, 1fuz ( H'l)/p

= T, if U; = 0.

(6

)

(d+b,-ui —biuZ+(a—d)u; )

bi a—bi Uq

Further, for o = («;), we set the representation

vz(a) = vi(u)a if & = (‘u]:, 9) is type 17
= 0, if a; type 2.

LEMMA 3.1. The order of the group EA NU® is given by

5
() [Ld e,

i=1
where T(a) = § if vi(a) = 0 for all © or vi(a) = r; for all i, and 1
otherwise.

PROOF. Suppose ( ) € U, so that ( )a € Ea. From the equation
(2), if o is type 2, it is satlsﬁed that b; = O, d+bju; =1 and a—bu; € A.
Thus b; = 0,d = 1, and a € A.

In other case, it must be satisfied that

(3) ui(a —-d- bzul) = 0,
(4) a—~bu; =1 and d + b;u; € A.
If v;(u) = 0, the condition (3) is equivalent to b; = u; '(a — d), and then

d=1anda € A. If 0 < v;(u) < 7, the condition (3) is equivalent to the
following:

a=dandb; € pg"_inf(”’%i("))/p?,
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and then, from (4), we get
a=dandb; €p, (u)/p
If vi(u) = 7, i.e., u; = 0, then we have
a=1,de Aandb; € A/p].
Summing up the above, we can conclude the result. d
Now we compute the sum ) (|Ea NU®| + |Ea N E?|), where a lies in

a representative system of G/T.

> (IEanU®| +|Ea N E®))

a
6+1 Z H 1nf(v,(a),r1) +2 Z H mf(vl(a i)
(a) st T(a) 1 =1
-9 Z Hq;nf(vi(a),ri) +(5-1) Z H inf(vi(r),ri)
all a i=1 T(a) 5t

= the first term + the second term.

The computation of the first term.

Note that
2 :ISI qi‘nf(vi(a),r,') — fI 2 :qi'nf(v(a,-),ri)
7 2 ‘

a i=1 i=1 oy

For the calculation, we use the following table.

v =v(a;) | number of a; | contribution of an «; sum
0 g;' 1 g
O<v<r|gi "—q """ 4 g —q
i 1 g 4"

Then Z gPH@dT) — 9ami 4 (py — 1) (gl — g7 ). Put

e7)

s

em) =T @+ s = D)1 = =)).

i=1

Then the first term is equal to 2[n|c(n).
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The computation of the second term.
Note that

(6—-1) Z H inf(vi(a),ri) _ _l)H Z inf(v(i)ri)

7'(04) 5 'r(a) é
Then Z inf(vaa)ri) = 2¢;*, because the o with 7(«) = 0 satisfy that

‘r(a) )
v(a;) = 0 for all ¢ or v(a;) = r; for all ¢. Thus the second term is equal
to 2(6 — 1)|n|.
Therefore the sum g ag over the cusps is given by

(5) gi»(—n_)l (2[nje(n) + 2(6 — 1)[n] — 2¢(n)).

We now compute the contribution of elliptic ramification. Note that
all the elliptic points of I'(1) are all conjugate under I'(1) and represented
by an element of Fj2 — F,. Let z € Fj2 — Fy. Then

H:=G,={(2%) |a,bc,deFqcz*+(d—a)z—b=0}.

LEMMA 3.2. T'a(n) has no elliptic points.

PrOOF. We must show that H* N Ea = {1} for all @ € G. One can
check that the order of H*N EA depends only on the class of o in EA\G
which denotes the set of right cosets. First, we will take a representative
system {a} = {(a;)} of T\G as follows:

{oa} ={(9) lui € A/ UL(4, 1) (V6) lws € pi/pi )

Next, we will take a representative system {8} = {(8:)} of Ea\T as

follows:
{8y =1{(0¢) [€ € (4/p*)"/A}.
Then {Ba} = {(B;a;)} is a representative system of Eao\G, where
(B} = {(en &) 1€€ (A/RF) /A ui € Afp}'}
U{(en, £) (38) 1€ € (A/PT)"/ A, us € i/}
By abuse of terminology, the element ( €us € ) will be called type 1. Sup-

pose that (‘c‘ g)a € Ea for some (g 3) € H Note that bc # 0. Consider
the following;:

( 1 0) (a b) 1 0\ _ a—bu; bt
€u; §) \ed) \ —ui €71 ] T | —beu24(a~d)€ust+ct dtbu;

1 0y/,01 b 1 0 _ d—cu; ct !
(fui E) (1 O) (g d) ((1)(1)) (—ui £‘1> - (_cgu12+(d—a)§ui+b§ a+cui) :
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The equality —c&u? + (d — a)€u; + b€ = 0 with u; € p;/p.* implies b = 0,
and so ¢; must be type 1 for all 4. Thus u; satisfies —bu?—i— (a—d)u;+c =
0,a —bu; =1 and d + bu; € A. But it is impossible. O

From the Hurwitz formula, Theorem 1, (5) and Lemma 3.2, we obtain

2p(n)
(¢?—-1)¢

Now we obtain the following theorem.

e(Xa(n)) = (—em) +(g+1)(c(n) +6 - 1)).

THEOREM 2. The genus of the Drinfeld modular curve X (n) is given
by
p(n)

9(Xam)) =1+ m(g(“) —(g+1)(c(n) +6-1)).

4. Some consequences

Next, we will determine all n for which Xa(n) is rational or elliptic.
Since there is a canonical covering Xa(n) — Xp(n), we only consider
the cases for which Xg(n) is rational or elliptic. Let n € A be of degree
d. Then Schweizer [4] proved that

(1) Xo(n) is rational if and only if d < 2.
(2) Xo(n) is elliptic if and only if ¢ = 2 and n is one of the polynomials
T3, THT + 1), T(T + 1)? and (T + 1)3.

PROPOSITION 4.1. (1) Xa(n) is rational if and only if d = 1 or
d=2andd=q—1.
(2) Xa(n) is elliptic if and only if d =2,¢ =3 and § = 1.

PROOF. Let g be the genus of Xa(n). If d = 1, then it is clear that
g = 0. Suppose d = 2. Then there are three cases.

Case(i) s =1, =1 and q; = ¢°.

—-6-1
q—(q—————). Thus g =0
if and only if n = ¢— 1. The genus g cannot be equal to 1, since ¢ doesn’t
divide 4.

Case(ii) s=1,r1=2and ¢1 =g¢.
(g-Dg-46-1)

0 = q — 1. The genus g cannot be 1, either.

From the formula in Theorem 2, we obtain g =

We come up with g = . Thus ¢ = 0 if and only if
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Case(iii) s =2,r = and q; = gz = q.
(4—2)(g—

Alsog=1ifand only if g =3 and § = 1.
By a simple calculation, if ¢ = 2 and n is one of the polynomials
T3, TX(T+1), T(T+1)? and (T +1)3, then g = 5, 3,3 and 5 respectively.
O

7‘221
§—1)

We have g = . Therefore g = 0 if and only if § = ¢—1.
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