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THE MASS FORMULA OF ORDERS
OVER A DYADIC LOCAL FIELD

SUNGTAE JUN AND INSUK KIM

ABSTRACT. In this paper, we study the arithmetic properties of
orders in a quaternion algebra over a dyadic local field and we find
the mass formula of orders.

1. Introduction

A primitive order in a quaternion algebra over a number field F' is an
order which contains the ring of integers in a quadratic extension field of
F. Locally, there are two types of quaternion algebras over a local field
k, i.e., a division algebra and a 2 x 2 matrix algebra. In these quaternion
algebras over a local field, primitive orders can be classified into three
types. Namely, an order in a quaternion division algebra which contains
the ring of integers of a quadratic extension field of & is called primitive.
In a 2 x 2 matrix algebra, there are two types of primitive orders. One is
an order which contains O x O where O is the ring of integers in k& and
the other is an order which contains the ring of integers of a quadratic
extension field of k.

Primitive orders in 2 x 2 matrix algebra which contain O x O where
O is the ring of integers were studied by Hijikata [4]. Primitive orders in
a division algebra, so called “special orders”, were studied by Hijikata,
Pizer and Shemanske [5]. The remaining type of primitive orders was
studied by Brezinski only on a nondyadic local field [2].

In this paper, we will study the arithmetic properties of third type of
orders and compute the Mass formula of the primitive orders in a 2 x 2
matrix algebra containing the ring of integers of a quadratic extension
field of a dyadic local field &k, which is the remaining type of primitive
orders not studied by Brezinski.
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2. Preliminaries

Throughout this paper, we assume that & is a dyadic local field. In
this section we summarize the arithmetic theory of dyadic local fields .
Let O = Ok denote the ring of integers in &k, P = P; the maximal ideal
of O. By A(a), we denote the discriminant of a.

A(a) = Tr(e)? — 4N(a),
where Tr and N are the trace and norm of L over k where L is a quadratic

extension field of k. If T" is an O algebra of rank 2 contained in L, then
I' = O + Ox and the discriminant of ' is

A = A(z) mod U?,
where U is the set of all units in O.
Let O? — 40 = {s? — 4n|s,n € O}. Then we consider the set of all
possible discriminants, (O? — 40)/U?.
DEFINITION 1. Let A, = ((O? —40) N #w°U)/U? for 0 = 0,1,2,-- -,
Ag= Do — {1}, AT = 4y,
A: = AU - 7T2A0'_2.

Note that A% # ¢ only if 0 = 2p,0 < p < e, or 0 = 2e + 1 where
e = ordg(2). Let

A= U?):OA; = (Ufe)———OA;p) U Age—}—l'

I' is a maximal order of a quadratic extension field of k£ if and only if
AT)e A*. Ife>0and 1 <p<e,

5p = mP(U? + 72ty U2

There is a bijective correspondence between the elements of A* and
quadratic extension fields of k given by A(T') —» I' ® O for A(T") an
element of A*.

LEMMA 2.1. Let U be the set of all units in © and e > 0. Then
U=U24P>U?+P2>...>U%+ P?H = U? and

1 if o is even and < 2e
(U2 + PO) /(U 4+ PP = Z/27  ifo = 2e
k if o is odd

where k = O/ P.

PROOF. See Proposition 1.4 in [5)]. O
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Thus we can classify all quadratic extension fields of a dyadic local
field k as follows: Af contains one point which corresponds to a unique
unramified quadratic extension of k and

* _ - 2e+1 2
2e+1 =T U/U

contains 2¢> points with ¢ = |O/P).

Let L be a quadratic extension field of & and z — Z denote the
conjugation of L/k. Further, let O be the ring of integers of L, Of, =
O+ Oa for some a € L. Then A(L) = A(Or) = A(a)U?, while A(a) =
Tr(a)? — 4N(a) = (o — @)%. Whence, ordp{a — &@)? = ordg(A(a)) =
ordg(A(L)).

DEFINITION 2. Let L be a quadratic extension of k.

t =t(L) = ordx(A(L)) — 1.

REMARK. Note that if L is an unramified extension field of k, then
t = —1. On the other hand, if L is a ramified extension field of a field
k, then t > 0. Furthermore, if k is a dyadic local field, then 0 <t < 2e
by 2.3 and 1.3 in [5].

LEMMA 2.2. Let L be a quadratic extension of k. If x € Oy, then
ord(A(x)) > ordp(A(L)) =t + 1.

Proor. If 2 = a+ba € Op = O+ «O with a,b € O, then
ordg(A(z)) = ordg(b?2A(a)) > ordi(A(L)) =t + 1. ad

3. Orders in quaternion algebra

Let A be a quaternion algebra which is split over a dyadic local field
k (i.e. A is isomorphic to 2 x 2 matrix algebra over k). and let L be
a quadratic extension field of k contained in A. Then there exists an
element £ in A* such that A= L+ &L and 2§ = €7 for all x € L. To see

this clearly, we can identify A with {(g g) la, B € L} and L with
{(g g) la € L}, where — is the conjugation of L over k. Then £ is
identified with 0 1 . Hence the norm and the trace of an element in A

10 _
are defined as the determinant and the trace of corresponding element in
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{(g g) |8 € L}. Also, N(€) = —1 implies that £ = —¢. Further,

for an arbitrary z € L, éx = € = —¢z.

If o is integral of degree 2 over O satisfying o? — s +n = 0. We
denote the discriminant of o by A(a) = s — 4n. Let Oy, be the ring of
integers in L, Py, the prime ideal of Oy. Let 7y, be the prime element of
Pr. An order of a quaternion algebra A is a lattice in A which is also a
subring containing the identity.

PRoOPOSITION 3.1. Let the notation be as above. Let R be an order
of A and L a quadratic extension field in A. Then R contains Oy, if and
only if

Or+&P7 if L is an unramified extension field,
R=¢0,+(1+ S)Pg”t_l if L is a ramified extension field , or
Or+(1- §)Pf—t‘1

for some nonnegative integer n and t = t(L).

PrRoOOF. Suppose that R is an order of A which contains Or. Then
R=0;,+4+y0Op forsomeye A. ye RC A=L+E(L. Let y = a+£8 for
some o, 3 € Land 8 # 0. If x € Oy, then 2y = z(a+£0) = (z—T)a+yZ.
So (z —Z)a=zy —yZ € R for any x € Oy,. Since ordy(zr —Z) >t +1
by Lemma 2.2, « € Py L.

If « € Op, then 8 € Op. For N(y) = N(a) — N(B) € O. Let
n =ord;B. Then R = O + &80 = O, + £PF.

If o ¢ Op, then o € Pgt—l — (@p,. This is the case that L is ramified.
Let a =7 %vand 8 =7 °wfor 1 <s <t¢t+1. From N(y) = N(a) —
N(B) € O, it is easy to see N(u/w) = 1 mod P. This implies that
u/w = £1 mod Py. Thus R is of the form, Op + (1 + &)PF ! or
O + (1 — €)PP~*"1. The other direction of the proof is trivial. O

COROLLARY 3.2. Let the notations be as above and e = ordi(2). If
L is a ramified extension field of k,

OL+ 1+ &P =0, +(1-&P;! if t=2e,
OL+Q+ &P =0,+(Q1 - P if t < 2e.

PROOF. Let a+(1—&n7 1€ Op+(1-¢)Pp~ 1. Then a+(1-
OB € Op+2rt i B4+ (148) T Oy, It = 2¢, 277713 € O
onlyifn=0 Op+(1—-&PF ' =0+ (1 +&PF " forn>1 If
t < 2e, 21" "t"13 € O, for any nonnegative integer n. O
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Let m(7wy) be a prime element in the ring of integers in k (L, respec-
tively). Then if L is ramified, = = w% mod OF and if L is unramified,
m = m;, mod O). We now need new notations of orders for the next
step.

DEFINITION 3. Let L be a quadratic extension field of k and Oy its
ring of integers. Then
(1) if L is unramified, R,(L) = Or +{n} 0 for n >0,
(2) if L is ramified,
(a) if t = 2e, Ro(L) = Op + (1 + 777710 for n > 0, or
Ro(L) = O, + (1 - &m0y,
(b) if t < 2e, Rp(L) = Op + (1 + &)} 71O, for n > 0.

REMARK. If L is unramified, then the index n of R, (L) is always an
even number.

LeEMMA 3.3. Let the notations be as above. Then
(1) if L is unramified,
s C Rzn(L) C Rzn_g(L) e C Ro(L),
Ro(L)

(2) if L is ramified, - -- C Rn(L) C Bp1(L)--- C Ry(L) C {RO(L).

Proor. This is immediate from Definition 3. O

PROPOSITION 3.4. Let L be a ramified quadratic extension field of k

and ¢ = 2. Then Ry(L) ~ (Pon g) forn =0,1.

PRrROOF. By the proof of Corollary 3.2, Ry(L) N Ry(L) = R1(L). By
Hijikata’s results ([4], 2.2 p.65), R1(L) ~ ]?n g) for some nonnega-

tive integer n. Since R;(L) is the second largest order contained in the

maximal order, Rg(L) = (g g), we conclude that n = 1. Clearly,
0o 0

THEOREM 3.5. Let the notations be as above and p = |O/P|. If L is
unramified, then |Ry, /Ry, | = p® for k > 1 and |R§ /RY| = p* — p.

PrROOF k > 0, a4+ £0 € R;k implies that « € Op and 8 € PI’f.
N(a +&8) = N(a) — N(B) € O*. That is, « € Of. Now R}, =
(L+EPFYRY o (1+EB)(A+EB2) = 1+ £81) (1 —EBy) =1 - Bifa +
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£ — Po) € R;k+2' Thus (1 + 5/31)R;k+2 =1+ 5ﬁ2)R§k+2 if and
only if f1 = B, mod Pf*'. RY /Ry, ., ~ PF/Pit! by the map ¢(1 +
En~"18) = B. Since |Pf/PFtY = |OL/PL| = p?, |R} /Ry, .| = p* .
Next, if a + {6 € R, then N(a) — N(B) € O*. There are three cases
to be classified.

(1) € Of and B € Pr.

(2) B€OFf and a € Py.

(3) a € Of and B € Of and N(a) - N(B) € P.
Hence, Ry = Ry USRS U{(1+&s)RS|s a representative of Oy /Py with
N(s) # 1 mod P}. Let N be a homomorphism from (Or/P)* —
(O/P)* induced by the norm of O to ©. Then (Op/Pp)* /ker(N) ~
(O/P)*. Hence |ker(N)| = p+ 1. We now conclude that |RY /RY| =
1+ 14+ (I(OL/PL)* | =p~1) =p* - p. 0

THEOREM 3.6. If L is ramified, then

(1) |Rg /Ryl =p+1.
(2) [Ry /R 1| =p forn > 1.

PRrROOF. Suppose that n > 1. Then o+ (14 &)8 € R implies that
N(a+ ) — N(B) € O*. That is, N(a) + Tr(a3) € O, which implies
N(a) € O* and a € Of. Now let RY = (Of + (1 + &)7n;71PP) =
(14 (1+&)n,""'PP)RY,,. Then we can define a map ¢ from R /Ryiy
to PP/PP by ¢({1+ (1 +€)B}RY,;) =8 mod P, Since (14 (1+

§)0)h = (1+Te() — (L +€)6)/N(1+ (1 +€)5),
{1+Tr(6) - L+ EHL+ 1+ £)B}
=14 Te(8) + (14 &){-6 — Tr(8)8 + (1 + Tr(6))B
=1+Tr(6) — (1+£)(8-9).
Hence 8 = 6 mod Py, implies that ¢(1 + (1 4+ £)6R, ;) = ¢(1+ (1 +
§)BRY,,) if and only if (1 + (L +&)8)R),, = (L+ (L +&)B)RL,,. ¢ is
well defined. It is clear that ¢ is bijective. i.e. RX /Ry ~ P"/P"Y
Hence (2) is proved.

By Proposition 3.4 and 2.2 in p.65 of [4] and direct computations,
IRy /Ryl = ("~ 1)/(p-1)=p+1. O

DEFINITION 4. Let M be an order of a quaternion algebra A over a
number field /. Let F, = F ® Q, for a prime p and O, is the ring of
integers in F,,. M is said to be an order of level gp™ if M ® O, is the
maximal order of A® F; and for some integer n > 0, M @ Op = R, (L) is
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an order of A® F,, ~ { Z 2) la,b,c,d € Fp} which contains the ring

of integers of a quadratic extension field of F},.

Our final goal is to compute the mass formula of an order of level
p"q. First of all, we need a definition of the mass formula. Let A be a
quaternion algebra ramified at a prime ¢ and co. Let M be an order of
level N for some integer N and let Iy, Is, - - - Iy be representatives of the
left M-ideal classes.

DEFINITION 5. Let the notations be as above. The right order M; of
I; is defined by
M; = {a € AlIza C Iz}

DEFINITION 6. The Mass formula for M ideals where M is an order
of A is given by

where U(M;) = M*.
Finally we can compute the mass formula for orders, R,,.

THEOREM 3.7. Let M be an order of level p™q. Then

Mass(M) = i(q -1)é

12
where § = (p? — p)p"~%  if L is unramified
(p+1)p™~Y  if L is ramified.

PROOF. Let M° be a maximal order in A containing M. Then as in
Proposition 24 and Proposition 25 in [9] p.685,

Mass(M) = Mass(M°)([U(M?) : U(M))).
By Eichler’s result (3], Mass(M°) = (g — 1). Therefore we need to
find [U(Mp) : U(M)] = Hp[U(Mz?) : U(Mp)]. Since M is a maximal
order, by Definition 3, My = Ry(L) and M, = Rn(L). Hence, if L is
unramified extension field of &, then
[U(My) - U(Mp)] = [Rg : Ry] -+~ [Ry_y : Ry]

n—2

= (" —p)p
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If L is ramified extension field of &, then
[U(Mp) : U(Mp)] = [Rg : Rf]-+- [Ry_y : Ry]
=(p+1)p"". O
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