THE MASS FORMULA OF ORDERS OVER A DYADIC LOCAL FIELD

SUNGTAE JUN AND INSUK KIM

ABSTRACT. In this paper, we study the arithmetic properties of orders in a quaternion algebra over a dyadic local field and we find the mass formula of orders.

1. Introduction

A primitive order in a quaternion algebra over a number field F is an order which contains the ring of integers in a quadratic extension field of F. Locally, there are two types of quaternion algebras over a local field k, i.e., a division algebra and a 2×2 matrix algebra. In these quaternion algebras over a local field, primitive orders can be classified into three types. Namely, an order in a quaternion division algebra which contains the ring of integers of a quadratic extension field of k is called primitive. In a 2×2 matrix algebra, there are two types of primitive orders. One is an order which contains $\mathcal{O} \times \mathcal{O}$ where \mathcal{O} is the ring of integers in k and the other is an order which contains the ring of integers of a quadratic extension field of k.

Primitive orders in 2×2 matrix algebra which contain $\mathcal{O} \times \mathcal{O}$ where \mathcal{O} is the ring of integers were studied by Hijikata [4]. Primitive orders in a division algebra, so called "special orders", were studied by Hijikata, Pizer and Shemanske [5]. The remaining type of primitive orders was studied by Brezinski only on a nondyadic local field [2].

In this paper, we will study the arithmetic properties of third type of orders and compute the Mass formula of the primitive orders in a 2×2 matrix algebra containing the ring of integers of a quadratic extension field of a dyadic local field k, which is the remaining type of primitive orders not studied by Brezinski.

Received April 05, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 11R52.

Key words and phrases: order, mass formula, dyadic local field.

The second author is supported by Wonkwang University in 2005.

2. Preliminaries

Throughout this paper, we assume that k is a dyadic local field. In this section we summarize the arithmetic theory of dyadic local fields. Let $\mathcal{O} = \mathcal{O}_k$ denote the ring of integers in k, $P = P_k$ the maximal ideal of \mathcal{O} . By $\Delta(\alpha)$, we denote the discriminant of α .

$$\Delta(\alpha) = \text{Tr}(\alpha)^2 - 4N(\alpha),$$

where Tr and N are the trace and norm of L over k where L is a quadratic extension field of k. If Γ is an \mathcal{O} algebra of rank 2 contained in L, then $\Gamma = \mathcal{O} + \mathcal{O}x$ and the discriminant of Γ is

$$\Delta(\Gamma) = \Delta(x) \mod U^2$$

where U is the set of all units in \mathcal{O} .

Let $\mathcal{O}^2 - 4\mathcal{O} = \{s^2 - 4n | s, n \in \mathcal{O}\}$. Then we consider the set of all possible discriminants, $(\mathcal{O}^2 - 4\mathcal{O})/U^2$.

Definition 1. Let
$$\Delta_{\sigma}=((\mathcal{O}^2-4\mathcal{O})\cap\pi^{\sigma}U)/U^2$$
 for $\sigma=0,1,2,\cdots,$
$$\Delta_0^*=\Delta_0-\{1\},\Delta_1^*=\Delta_1,$$

$$\Delta_{\sigma}^*=\Delta_{\sigma}-\pi^2\Delta_{\sigma-2}.$$

Note that $\Delta_{\sigma}^* \neq \phi$ only if $\sigma = 2\rho, 0 \leq \rho \leq e$, or $\sigma = 2e+1$ where $e = \operatorname{ord}_k(2)$. Let

$$\Delta^* = \cup_{\sigma=0}^{\infty} \Delta_{\sigma}^* = \left(\cup_{\rho=0}^{e} \Delta_{2\rho}^*\right) \cup \Delta_{2e+1}^*.$$

 Γ is a maximal order of a quadratic extension field of k if and only if $\Delta(\Gamma) \in \Delta^*$. If e > 0 and $1 \le \rho \le e$,

$$\Delta_{2\rho}^* = \pi^{2\rho} (U^2 + \pi^{2e - 2\rho + 1} U) / U^2.$$

There is a bijective correspondence between the elements of Δ^* and quadratic extension fields of k given by $\Delta(\Gamma) \to \Gamma \otimes \mathcal{O}$ for $\Delta(\Gamma)$ an element of Δ^* .

LEMMA 2.1. Let U be the set of all units in \mathcal{O} and e > 0. Then $U = U^2 + P \supset U^2 + P^2 \supset \cdots \supset U^2 + P^{2e+1} = U^2$ and

$$(U^2 + P^{\sigma})/(U^2 + P^{\sigma+1}) \simeq \begin{cases} 1 & \text{if } \sigma \text{ is even and } < 2e \\ \mathbb{Z}/2\mathbb{Z} & \text{if } \sigma = 2e \\ \bar{k} & \text{if } \sigma \text{ is odd} \end{cases}$$

where $\overline{k} = \mathcal{O}/P$.

PROOF. See Proposition 1.4 in [5].

Thus we can classify all quadratic extension fields of a dyadic local field k as follows: Δ_0^* contains one point which corresponds to a unique unramified quadratic extension of k and

$$\Delta_{2e+1}^* = \pi^{2e+1} U/U^2$$

contains $2q^2$ points with $q = |\mathcal{O}/P|$.

Let L be a quadratic extension field of k and $x \to \bar{x}$ denote the conjugation of L/k. Further, let \mathcal{O}_L be the ring of integers of L, $\mathcal{O}_L = \mathcal{O} + \mathcal{O} \alpha$ for some $\alpha \in L$. Then $\Delta(L) = \Delta(\mathcal{O}_L) = \Delta(\alpha)U^2$, while $\Delta(\alpha) = \mathrm{Tr}(\alpha)^2 - 4\mathrm{N}(\alpha) = (\alpha - \bar{\alpha})^2$. Whence, $\mathrm{ord}_k(\alpha - \bar{\alpha})^2 = \mathrm{ord}_k(\Delta(\alpha)) = \mathrm{ord}_k(\Delta(L))$.

DEFINITION 2. Let L be a quadratic extension of k.

$$t = t(L) = \operatorname{ord}_k(\Delta(L)) - 1.$$

REMARK. Note that if L is an unramified extension field of k, then t = -1. On the other hand, if L is a ramified extension field of a field k, then $t \geq 0$. Furthermore, if k is a dyadic local field, then $0 < t \leq 2e$ by 2.3 and 1.3 in [5].

LEMMA 2.2. Let L be a quadratic extension of k. If $x \in \mathcal{O}_L$, then $\operatorname{ord}_L(\Delta(x)) \geq \operatorname{ord}_k(\Delta(L)) = t + 1$.

PROOF. If $x = a + b\alpha \in \mathcal{O}_L = \mathcal{O} + \alpha \mathcal{O}$ with $a, b \in \mathcal{O}$, then $\operatorname{ord}_k(\Delta(x)) = \operatorname{ord}_k(b^2\Delta(\alpha)) \geq \operatorname{ord}_k(\Delta(L)) = t + 1$.

3. Orders in quaternion algebra

Let A be a quaternion algebra which is split over a dyadic local field k (i.e. A is isomorphic to 2×2 matrix algebra over k). and let L be a quadratic extension field of k contained in A. Then there exists an element ξ in A^{\times} such that $A=L+\xi L$ and $x\xi=\xi\bar{x}$ for all $x\in L$. To see this clearly, we can identify A with $\left\{\begin{pmatrix} \alpha & \bar{\beta} \\ \bar{\beta} & \bar{\alpha} \end{pmatrix} \mid \alpha,\beta\in L\right\}$ and L with $\left\{\begin{pmatrix} \alpha & 0 \\ 0 & \bar{\alpha} \end{pmatrix} \mid \alpha\in L\right\}$, where - is the conjugation of L over k. Then ξ is identified with $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Hence the norm and the trace of an element in A are defined as the determinant and the trace of corresponding element in

$$\left\{\begin{pmatrix} \alpha & \bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix} \mid \alpha, \beta \in L \right\}. \text{ Also, } N(\xi) = -1 \text{ implies that } \bar{\xi} = -\xi. \text{ Further,}$$
 for an arbitrary $x \in L$, $\overline{\xi x} = \bar{x}\bar{\xi} = -\xi x$.

If α is integral of degree 2 over \mathcal{O} satisfying $\alpha^2 - s\alpha + n = 0$. We denote the discriminant of α by $\Delta(\alpha) = s^2 - 4n$. Let \mathcal{O}_L be the ring of integers in L, P_L the prime ideal of \mathcal{O}_L . Let π_L be the prime element of P_L . An order of a quaternion algebra A is a lattice in A which is also a subring containing the identity.

Proposition 3.1. Let the notation be as above. Let R be an order of A and L a quadratic extension field in A. Then R contains \mathcal{O}_L if and only if

$$R = \begin{cases} \mathcal{O}_L + \xi P_L^n & \text{if L is an unramified extension field,} \\ \mathcal{O}_L + (1+\xi)P_L^{n-t-1} & \text{if L is a ramified extension field,} \\ \mathcal{O}_L + (1-\xi)P_L^{n-t-1} & \text{or } \end{cases}$$

for some nonnegative integer n and t = t(L).

PROOF. Suppose that R is an order of A which contains \mathcal{O}_L . Then $R = \mathcal{O}_L + y \mathcal{O}_L$ for some $y \in A$. $y \in R \subset A = L + \xi L$. Let $y = \alpha + \xi \beta$ for some $\alpha, \beta \in L$ and $\beta \neq 0$. If $x \in \mathcal{O}_L$, then $xy = x(\alpha + \xi \beta) = (x - \bar{x})\alpha + y\bar{x}$. So $(x-\bar{x})\alpha = xy - y\bar{x} \in R$ for any $x \in \mathcal{O}_L$. Since $\operatorname{ord}_L(x-\bar{x}) \geq t+1$ by Lemma 2.2, $\alpha \in P_L^{-t-1}$.

If $\alpha \in \mathcal{O}_L$, then $\beta \in \mathcal{O}_L$. For $N(y) = N(\alpha) - N(\beta) \in \mathcal{O}$. Let

 $n = \operatorname{ord}_L \beta$. Then $R = \mathcal{O}_L + \xi \beta \mathcal{O}_L = \mathcal{O}_L + \xi P_L^n$. If $\alpha \not\in \mathcal{O}_L$, then $\alpha \in P_L^{-t-1} - \mathcal{O}_L$. This is the case that L is ramified. Let $\alpha = \pi_L^{-s} u$ and $\beta = \pi_L^{-s} w$ for $1 \le s \le t+1$. From $N(y) = N(\alpha) - 1$ $N(\beta) \in \mathcal{O}$, it is easy to see $N(u/w) \equiv 1 \mod P$. This implies that $u/w \equiv \pm 1 \mod P_L$. Thus R is of the form, $\mathcal{O}_L + (1+\xi)P_L^{n-t-1}$ or $\mathcal{O}_L + (1-\xi)P_L^{n-t-1}$. The other direction of the proof is trivial.

COROLLARY 3.2. Let the notations be as above and $e = \operatorname{ord}_k(2)$. If L is a ramified extension field of k,

$$\begin{cases} \mathcal{O}_L + (1+\xi)P_L^{-t} = \mathcal{O}_L + (1-\xi)P_L^{-t} & \text{if } t = 2e, \\ \mathcal{O}_L + (1+\xi)P_L^{-t-1} = \mathcal{O}_L + (1-\xi)P_L^{-t-1} & \text{if } t < 2e. \end{cases}$$

PROOF. Let $\alpha + (1-\xi)\pi_L^{n-t-1}\beta \in \mathcal{O}_L + (1-\xi)P_L^{n-t-1}$. Then $\alpha + (1-\xi)\pi_L^{n-t-1}\beta \in \mathcal{O}_L + 2\pi_L^{n-t-1}\beta + (1+\xi)\pi_L^{n-t-1}\mathcal{O}_L$. If $t=2e, 2\pi^{n-t-1}\beta \in \mathcal{O}_L$ only if n=0. $\mathcal{O}_L + (1-\xi)P_L^{n-t-1} = \mathcal{O}_L + (1+\xi)P_L^{n-t-1}$ for $n\geq 1$. If t < 2e, $2\pi^{n-t-1}\beta \in \mathcal{O}_L$ for any nonnegative integer n.

Let $\pi(\pi_L)$ be a prime element in the ring of integers in k (L, respectively). Then if L is ramified, $\pi \equiv \pi_L^2 \mod \mathcal{O}_L^{\times}$ and if L is unramified, $\pi \equiv \pi_L \mod \mathcal{O}_L^{\times}$. We now need new notations of orders for the next step.

DEFINITION 3. Let L be a quadratic extension field of k and \mathcal{O}_L its ring of integers. Then

- (1) if L is unramified, $R_n(L) = \mathcal{O}_L + \xi \pi_L^n \mathcal{O}_L$ for $n \ge 0$,
- (2) if L is ramified,
 - (a) if t = 2e, $R_n(L) = \mathcal{O}_L + (1+\xi)\pi_L^{n-t-1}\mathcal{O}_L$ for $n \geq 0$, or $\overline{R_0(L)} = \mathcal{O}_L + (1-\xi)\pi_L^{-t-1}\mathcal{O}_L$,
 - (b) if t < 2e, $R_n(L) = \mathcal{O}_L + (1+\xi)\pi_L^{n-t-1}\mathcal{O}_L$ for $n \ge 0$.

REMARK. If L is unramified, then the index n of $R_n(L)$ is always an even number.

Lemma 3.3. Let the notations be as above. Then

(1) if L is unramified,

$$\cdots \subset R_{2n}(L) \subset R_{2n-2}(L) \cdots \subset R_0(L),$$

(2) if L is ramified,
$$\cdots \subset R_n(L) \subset R_{n-1}(L) \cdots \subset R_1(L) \subset \left\{ \frac{R_0(L)}{R_0(L)} \right\}$$
.

PROOF. This is immediate from Definition 3.

PROPOSITION 3.4. Let L be a ramified quadratic extension field of k and t = 2e. Then $R_n(L) \approx \begin{pmatrix} \mathcal{O} & \mathcal{O} \\ P^n & \mathcal{O} \end{pmatrix}$ for n = 0, 1.

PROOF. By the proof of Corollary 3.2, $R_0(L) \cap \overline{R_0(L)} = R_1(L)$. By Hijikata's results ([4], 2.2 p.65), $R_1(L) \approx \begin{pmatrix} \mathcal{O} & \mathcal{O} \\ P^n & \mathcal{O} \end{pmatrix}$ for some nonnegative integer n. Since $R_1(L)$ is the second largest order contained in the maximal order, $R_0(L) \approx \begin{pmatrix} \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} \end{pmatrix}$, we conclude that n = 1. Clearly,

$$R_1(L) \approx \begin{pmatrix} \mathcal{O} & \mathcal{O} \\ P & \mathcal{O} \end{pmatrix}.$$

Theorem 3.5. Let the notations be as above and $p = |\mathcal{O}/P|$. If L is unramified, then $|R_{2k}^{\times}/R_{2k+2}^{\times}| = p^2$ for $k \geq 1$ and $|R_0^{\times}/R_2^{\times}| = p^2 - p$.

PROOF k > 0, $\alpha + \xi\beta \in R_{2k}^{\times}$ implies that $\alpha \in \mathcal{O}_L$ and $\beta \in P_L^k$. $N(\alpha + \xi\beta) = N(\alpha) - N(\beta) \in \mathcal{O}^{\times}$. That is, $\alpha \in \mathcal{O}_L^{\times}$. Now $R_{2k}^{\times} = (1 + \xi P_L^{2k}) R_{2k+2}^{\times}$. $(1 + \xi\beta_1) \overline{(1 + \xi\beta_2)} = (1 + \xi\beta_1) (1 - \xi\beta_2) = 1 - \overline{\beta_1} \beta_2 + \overline{\beta_2} \beta_2$

 $\xi(\beta_1 - \beta_2) \in R_{2k+2}^{\times}$. Thus $(1 + \xi \beta_1) R_{2k+2}^{\times} = (1 + \xi \beta_2) R_{2k+2}^{\times}$ if and only if $\beta_1 \equiv \beta_2 \mod P_L^{k+1}$. $R_{2k}^{\times}/R_{2k+2}^{\times} \approx P_L^k/P_L^{k+1}$ by the map $\phi(1+1)$ $\xi \pi^{-t-1} \beta$) = β . Since $|P_L^k/P_L^{k+1}| = |\mathcal{O}_L/P_L| = p^2$, $|R_{2k}^{\times}/R_{2k+2}^{\times}| = p^2$. Next, if $\alpha + \xi \beta \in R_0^{\times}$, then $N(\alpha) - N(\beta) \in \mathcal{O}^{\times}$. There are three cases to be classified.

- (1) $\alpha \in \mathcal{O}_L^{\times}$ and $\beta \in P_L$.
- (2) $\beta \in \mathcal{O}_L^{\times}$ and $\alpha \in P_L$.
- (3) $\alpha \in \mathcal{O}_{L}^{\times}$ and $\beta \in \mathcal{O}_{L}^{\times}$ and $N(\alpha) N(\beta) \notin P$.

Hence, $R_0^{\times} = R_2^{\times} \cup \xi R_2^{\times} \cup \{(1+\xi s)R_2^{\times} | s \text{ a representative of } \mathcal{O}_L/P_L \text{ with }$ $N(s) \not\equiv 1 \mod P$. Let \tilde{N} be a homomorphism from $(\mathcal{O}_L/P_L)^{\times} \rightarrow$ $(\mathcal{O}/P)^{\times}$ induced by the norm of \mathcal{O}_L to \mathcal{O} . Then $(\mathcal{O}_L/P_L)^{\times}/\ker(\tilde{N}) \simeq$ $(\mathcal{O}/P)^{\times}$. Hence $|\ker(\tilde{N})| = p+1$. We now conclude that $|R_0^{\times}/R_2^{\times}| =$ $1 + 1 + (|(\mathcal{O}_L/P_L)^{\times}| - p - 1) = p^2 - p.$

Theorem 3.6. If L is ramified, then

- (1) $|R_0^{\times}/R_1^{\times}| = p+1$. (2) $|R_n^{\times}/R_{n+1}^{\times}| = p$ for $n \ge 1$.

PROOF. Suppose that $n \geq 1$. Then $\alpha + (1+\xi)\beta \in R_n^{\times}$ implies that $N(\alpha + \beta) - N(\beta) \in \mathcal{O}^{\times}$. That is, $N(\alpha) + \text{Tr}(\alpha \overline{\beta}) \in \mathcal{O}^{\times}$, which implies $N(\alpha) \in \mathcal{O}^{\times}$ and $\alpha \in \mathcal{O}_L^{\times}$. Now let $R_n^{\times} = (\mathcal{O}_L^{\times} + (1+\xi)\pi_L^{-t-1}P_L^n) =$ $(1+(1+\xi)\pi_L^{-t-1}P_L^n)R_{n+1}^{\times}$. Then we can define a map ϕ from $R_n^{\times}/R_{n+1}^{\times}$ to P_L^n/P_L^{n+1} by $\phi(\{1+(1+\xi)\beta\}R_{n+1}^{\times}) \equiv \beta \mod P_L^{n+1}$. Since $(1+(1+\xi)\delta)^{-1} = (1+\text{Tr}(\delta)-(1+\xi)\delta)/N(1+(1+\xi)\delta)$,

$$\begin{aligned} \{1 + \text{Tr}(\delta) - (1 + \xi)\delta\} \{1 + (1 + \xi)\beta\} \\ &= 1 + \text{Tr}(\delta) + (1 + \xi)\{-\delta - \text{Tr}(\delta)\beta + (1 + \text{Tr}(\delta))\beta \\ &= 1 + \text{Tr}(\delta) - (1 + \xi)(\beta - \delta). \end{aligned}$$

Hence $\beta \equiv \delta \mod P_L$ implies that $\phi(1 + (1 + \xi)\delta R_{n+1}^{\times}) = \phi(1 + (1 + \xi)\delta R_{n+1}^{\times})$ $\xi \beta R_{n+1}^{\times}$ if and only if $(1 + (1+\xi)\delta)R_{n+1}^{\times} = (1 + (1+\xi)\beta)R_{n+1}^{\times}$. ϕ is well defined. It is clear that $\tilde{\phi}$ is bijective. i.e. $R_n^{\times}/R_{n+1}^{\times} \approx P^n/P^{n+1}$. Hence (2) is proved.

By Proposition 3.4 and 2.2 in p.65 of [4] and direct computations, $|R_0^{\times}/R_1^{\times}| = (p^2 - 1)/(p - 1) = p + 1.$

Definition 4. Let M be an order of a quaternion algebra A over a number field F. Let $F_p = F \otimes \mathbb{Q}_p$ for a prime p and \mathcal{O}_p is the ring of integers in F_p . M is said to be an order of level qp^n if $M\otimes \mathcal{O}_q$ is the maximal order of $A \otimes F_q$ and for some integer $n \geq 0$, $M \otimes \mathcal{O}_p = R_n(L)$ is an order of $A \otimes F_p \simeq \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in F_p \right\}$ which contains the ring of integers of a quadratic extension field of F_p .

Our final goal is to compute the mass formula of an order of level p^nq . First of all, we need a definition of the mass formula. Let A be a quaternion algebra ramified at a prime q and ∞ . Let M be an order of level N for some integer N and let $I_1, I_2, \dots I_H$ be representatives of the left M-ideal classes.

DEFINITION 5. Let the notations be as above. The right order M_i of I_i is defined by

$$M_i = \{ a \in A | I_i a \subset I_i \}.$$

DEFINITION 6. The Mass formula for M ideals where M is an order of A is given by

Mass
$$(M) = 2 \sum_{i=1}^{H} \frac{1}{|U(M_i)|},$$

where $U(M_i) = M_i^{\times}$.

Finally we can compute the mass formula for orders, R_n .

Theorem 3.7. Let M be an order of level p^nq . Then

$$Mass(M) = \frac{1}{12}(q-1)\delta$$

where
$$\delta = \begin{cases} (p^2 - p)p^{n-2} & \text{if } L \text{ is unramified} \\ (p+1)p^{n-1} & \text{if } L \text{ is ramified.} \end{cases}$$

PROOF. Let M^0 be a maximal order in A containing M. Then as in Proposition 24 and Proposition 25 in [9] p.685,

$$Mass(M) = Mass(M^0)([U(M^0) : U(M)]).$$

By Eichler's result [3], $\operatorname{Mass}(M^0) = \frac{1}{12}(q-1)$. Therefore we need to find $[U(M_0):U(M)] = \prod_p [U(M_p^0):U(M_p)]$. Since M_p^0 is a maximal order, by Definition 3, $M_p^0 = R_0(L)$ and $M_p = R_n(L)$. Hence, if L is unramified extension field of k, then

$$[U(M_p^0): U(M_p)] = [R_0^{\times} : R_2^{\times}] \cdots [R_{n-2}^{\times} : R_n^{\times}]$$

= $(p^2 - p)p^{n-2}$.

If L is ramified extension field of k, then

$$[U(M_p^0):U(M_p)] = [R_0^{\times}:R_1^{\times}] \cdots [R_{n-1}^{\times}:R_n^{\times}]$$
$$= (p+1)p^{n-1}.$$

References

- [1] A. Atkin and J. Lehner, Hecke operators on $\Gamma_0(N)$, Math. Ann. 185 (1970), 134–160.
- [2] J. Brezinski, On automorphisms of Quaternion orders J. Reine Angew. Math. 43 (1992), 102–109.
- [3] M. Eichler, The basis problem for modular forms and the traces of Hecke operators, Springer-Verlag, Lecture Notes in Math. 320 (1972), 75-151.
- [4] H. Hijikata, Explicit formula of the traces of the Hecke operators for $\Gamma_0(N)$, J. Math. Soc. Japan **26** (1974), 56-82,
- [5] H. Hijikata, A. Pizer, and T. Shemanske, Orders in Quaternion Algebras, J. Reine Angew. Math. 394 (1989), 59-106.
- [6] _____, The basis problem for modular forms on $\Gamma_0(N)$, Mem. Amer. Math. Soc. 82 (1982).
- [7] T. Lam, The algebraic theory of quadratic forms, W.A. Benjamin, 1980
- [8] A. Pizer, An Algorithm for computing modular forms on $\Gamma_0(N)$, J. Algebra 6 (1980), 340–390.
- [9] _____, On the arithmetic of Quaternion algebras II, J. Math. Soc. Japan 28 (1976), 676-698.
- [10] _____, The action of the Canonical involution on Modular forms of weigh 2 on $\Gamma_0(N)$, Math. Ann. **226** (1977), 99–116.
- [11] I. Reiner, Maximal orders, Academic Press, 1975.
- [12] A. Weil, Basic number theory, Berlin, Hedelberg, New York: Springer, 1967.

Sungtae Jun

Division of Mathematics and Computer sicience

Konkuk University

Choongju 380-151, Korea

E-mail: sjun@kku.ac.kr

Insuk Kim

Division of Mathematics and Informational Statistics

Wonkwang University

Iksan 540-749, Korea

E-mail: iki@wonkwang.ac.kr