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CONVOLUTORS FOR THE SPACE
OF FOURIER HYPERFUNCTIONS

KwaNg WHo1 KiMm

ABSTRACT. We define the convolutions of Fourier hyperfunctions
and show that every strongly decreasing Fourier hyperfunction is a
convolutor for the space of Fourier hyperfunctions and the converse
is true. Also we show that there are no differential operator with
constant, coefficients which have a fundamental solution in the space
of strongly decreasing Fourier hyperfunctions. Lastly we show that
the space of multipliers for the space of Fourier hyperfunctions
consists of analytic functions extended to any strip in C™ which
are estimated with a special exponential function exp(ulz|).

0. Introduction
We introducted the following in [6].

Let F{3,,) be the space of continuously differentiable functions ¢(x)
for which the norm

0% ¢()| exp(v|zl)

(0.1) l‘P'(h,u) = zeslgga h-lalgl , h>0, veR
is finite. Then the (continuous) embeddings
(02) F(h’y) C F(h’,l/’)v h > B > 0, v2 v

take place.
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By virtue of (0.2), we can define the spaces G, © and M with the
aid of the operations of projective and inductive limits:

G= ﬂ F(h,u),
h,v
(0.3) O =JFiow)» Fleow =[] Finu),
v h>0

M= ﬂ Fh,—o0)y EFlhy—o0) = UF(h,u)-
h>0 v

Let the space G'(O’ resp.) be a space of continuous linear functionals
on G(O resp.). Since the embeddings (0.2) induce the adjoint embed-
dings

(04) (F(hl’ul))l C (F(h,u))/: h Z hl > 0, 14 Z I//.

The space G’ regarded as a vector space coincides with the union of
(Flh)"

(0.5) ¢ =JFnm)"-

The right-hand space can be equipped with the topology of inductive
limit, and in the left-hand space we can introduce the topology of the
strong conjugate space of G.

Note that G’ is reflexive and regular inductive limit, which implies the
coincidence of the two above-mentioned topologies in G’. The regularity
of G’ implies that for each bounded set B C G’ there are real numbers
h and p such that B C (F,))'-

The space (' regarded as a vector space can be identified with the pro-
jective limit of the conjugate spaces (F{,.))’. The latter, when treated
as vector spaces, are identified with the inductive limits (J,(F(n.)) -
Thus,

(0.6) O = (UFnu))-

v h

Let H.,» (v € R) denote the space of measurable functions square
integrable with weight exp(2v|z|). The corresponding norm is written
as

(0.7) Ifll<v> = (£, N<vs)? = || exp(v]a]) f]| L2
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Then we see that

g C F(h,u-}—f) C H<’u> C (F(h,—,u,-{-e))/ C g/, e > 0.

Let Heo> = H. Then the mapping f — fexp(v|z|) determines an
isometric isomorphism of H.,~ onto H. It follows that H._,~ and the
Banach conjugate space of H.,~ are isometrically isomorphic, i.e.,

(0.8) (Heys) = He s

Consequently, H,~ is a reflexive Banach space.
We can define in H.,~ the scalar product

(0.9) (f,9)<vs = / exp(2v]a]) f(z)g(@)dz

to which the norm (0.7) corresponds. In other words, H., > is a Hilbert
space.

Since G C H.s» C G’ and the Fourier operator ¥ : G’ — G’ is one-to-
one and transforms the subset G C G’ into itself, we denote by H(®) the
image of H .- under the operator F~1:

H® =gF-1H_.

Since the composition of ¥ and F~! is an identity operator in G’, we
have
gH(s) = H<s> .

We introduce the norm

(0.10) LA = 15 fll<s>

in the space H®). Thus, H) consists of those functions f € G, pos-
sessing Fourier transforms, which are square summable and whose norm
(0.10) is finite.

We now include the zeroth space Heps, v > 0, in the scale {H (<s,3>}
generated with respect to pseudodifferential operators. To this end we
define the symbols

n

(0.11) 8s,n(¢) = exp(s D _(N?+¢.)2).

k=1
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Note that if s > 0, then for [Im{,| < v < N,
(0.12) Cr exp(s/V2(¢) < 186,n(Q)] < Czexp(s¢]).
We put
(013)  HE, ={f € H"®| 8,n(D)f € Heus, 0<v <N}
and equip this space with the norm
(0.14) 1715 = 18s v (D)fl<v>, 0 S w < N.

We can introduce in this space a scalar product (to which the norm
(0.14) corresponds):

(0.15) (£,9)s = (6s,n(D)f, 85,8(D)g)<v>, 0 < v < N.
Since
(0.16) Fihyse C HEZ C Flnjany, byvye> 0,
we have
(0.17) G=HS:.
h,v

For v > 0 we define H (<:s,2>, s € R as the Banach conjugate space of

H (<s,3> and introduce in it the norm of a conjugate space:

(0.18) 1F1E25 = sup{|(f, 9)I] [l < 1}.

Then we have

(0.19) F(h,_,,_*_e) C H((ﬁ{?)) C F(h/4’_,,), h,v > 0.

Since the spaces H (<s,3>, v > 0, form a scale, the spaces H (<__53> form

the dual scale, and we can consider the inductive limits H. gf;o), H S_olf’;,

and endow them with the natural topology. By virtue of the reflexivity of
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H (<33>, these limits are regular, and, according to the general properties
of regular inductive limits, we have the topological isomorphisms

, —

(HSL) =HISY,

(0.20) ¢ = JHY,,

ERY
where the left-hand and right-hand spaces are equipped with topologies
of strong conjugate space and inductive limits, respectively.

(0.16) and (0.19) implies

o=JBSL, 0 =NHLY,

(0.21) ,
M=HS ..

In this paper, making use of the same method as in [3], we research
properties of the convolutions of Fourier hyperfunctions in the spaces
HE).

In Section 2, we show that the convolution of analytic functions es-
timated with exponential functions exp(v;|z|), ¢ = 1,2, v1 > vy >
0 is defined and associative(Proposition 2.1 and 2.3), and that every
Fourier hyperfunction can be expressed as the form f = d; v (D) fo, fo €
Fp,y(Lemma 2.4). Also we show that the operator of convolution de-
fined originally on the dense subset G x O C O’ x G’ is continued by
continuity to a mapping of O’ x G'(Proposition 2.5). Defining the con-
volution of Fourier hyperfunctions as in the proof of Proposition 2.5 we
show the following(Propsition 2.8):

OxdCcd, &=6,¢, 0, 0O,
GxG' CcO, Ox0 CO.

In Section 3, we introduce the definition of convolution operator and
show that when ® = G, ¢’, O, @', for each convolution operator A :
® — P there is a strongly decreasing Fourier hyperfunction f € O’ such
that

Ap=fxp, p€®.
Also we show that there are no differential operator with constant coef-
ficients which have a fundamental solution in the space ¢’.

Lastly we show that the space of multipliers for the space of Fourier
hyperfunctions consists of analytic functions extended to any strip in C"
which are estimated with a special exponential function exp(u|z|).
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1. Preliminaries

We introduce some theorems and propositions to need in this paper
which are founded in [6].

THEOREM 1.1. f(x) € F(y,) if and only if f(z) can be continued
holomorpically to the tube domain Dy, = {z +yi € C"| |y;| < h,j =
1,2,--- ,n} such that

(1.1) [f(z +yi)| <Cexp(—viz|).

Let v > 0. Let F(*) denote the Banach space of functions (()
holomorphic in the tube domain D, and having a finite norm

(1.2) |} = sup exp(s|¢[)]()I.
¢eD,

PROPOSITION 1.2. The map Fy, .y — F) 2 f(z) = flz+yi)isa
topological isomorphism and there are constants C1, Cs > 0 such that

(1.3) C1l 1) < | fl(hwy < Cal F1P).

REMARK. From Proposition 1.2 we see that

(1.4) M= | Flr=e),

v>0

THEOREM 1.3. The Fourier-Laplace transform § : F(, ,) — Fwh) .
w(x) — @(¢) is a topological isomorphism.

THEOREM 1.4. The Fourier-Laplace transform operator determines
an isomorphism

(1.5) FG= () F"M.

h,w>0
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PRrROPOSITION 1.5. (i) M is a commutative algebra relative to mul-
tiplication;
(ii) FG is an ideal in M. i.e., the operation of multiplication

M x G — G ((a(¢), () — a(¢)¥(¢))
is defined.

THEOREM 1.6. The following isomorphisms of vector spaces hold:
(1.6) FO' =M,

where F is a Fourier-Laplace operator.

PROPOSITION 1.7. For s > 0 we have
(1.7) Flp~F"9 CFy> cF®VD ~F, o

where F é;’ ~ is the space of holomorphic functions in the tube domain
D, and having a finite norm:

Y15~ = sup |6s,n (OIIF (O]
¢eD,

PROPOSITION 1.8. ([3]) Suppose that Ag : G — G be a linear oper-
ator and that for each v there exists a number v’ and for each s there
exists a number s’ such that the inequality

(1.8) 400l E% < ClielS)s, peg

is satisfied. Then Ag is the restriction to G of a regular operator A :
0 - 0.

3. Convolution in the space of Fourier hyperfunctions
If f and g are continuous functions and the expressions f(x — y)g(y)

and g(y) f(z — y) regarded as functions of y are absolutely integrable for
each x € R™, then the operation of convolution

(f *g)(z) = / £z - v)a(v)dy
= /f(y)g(fC —y)dy

is defined for them, and f*g = g« f, i.e., the operation is commutative.

(2.1)
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PROPOSITION 2.1. Let f € Fy, .y and g € Fp, 1), and let v > |p|.
Then f*g=g* f € Fipy, h=min{hy, ha} and

(2.2) Lf * gl(n,u) < const|f|(ny,) |9l (hap)-

Proof. It follows from Theorem 1.1 and Proposition 1.2 that for |y,| <
h

I(f * g)(z + yi)|
< [1(@+vi- gl
< CUI™ gl exp(=pfal) [ explule] = vl — ) - uitht
< C'Nf)ha, )19 ha o) exp(—ulwl)/exp(—(v — |u)lz - t])dt
< C"|f|(h1,u)|9|(h2,u) exp(—p|z|).
This completes the proof. 0
COROLLARY 2.2. We have
(2.3) G+x®Cd, &=0, O, Foo .
PROPOSITION 2.3. For hy > hy > hz > 0 and v1 > vy > v3, let
fi € F(hi,vi)’ 1=1,2,3. Then

(2.4) fi*x (fax f3) = (fi x f2) * f5.

Proof. By virtue of Proposition 2.1, all the convolutions exist and all
the integrals involved in them are absolutely convergent. According to
the definition of the convolution, (2.4) implies that for every z € R

[#a=v) [ 2=y = [ [ Aoy fate)asdy.

On the basis of Fubini’s theorem, we can replace the repeated integrals
by double integrals. Making change of variable y — y — z in the right-
hand integral we obtain (2.4). O
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By pseudodifferential operators (PDO) in G are meant operators hav-
ing the form

25  (a(D)p)(x) = (2m) ™ / expli < ,& >)a()PE)dE.

If fe G and a(€) € M, then we define by a(D)f the functional

(2.6) (a(D)f,¢) = (fa(-D)¢), ¢ €G.

Fix v > 0. Each function a(¢) € F*'~°°) is a multiplier on the space
F(”"°°), V' < v and for ¢ € Flo,,/) we can define the PDO

a(D)yp = (2%)""/2/exp(i <&+l z >)a( +iD)@(E+iD)dg, T e V'L

Then Theorem 1.1 and 1.3 imply that a(D) : F,.) = Floo,) is con-
tinuous.

LEMMA 2.4.

(i) For any f € G’ there are positive numbers h,k and v € R such
that f = 6k, n(D)g, g € Flh,u)-

(if) If f € O, then for every v > 0 there are postive numbers h, s
such that f = 6 n(D)gy, gv € Fip,.).

Proof. (i) According to (0.20), for f € G’ there are real numbers o,
v such that f € H (<U,,)>

Since for any s, u and r the mapping H(<‘2> — H(<S/:;) : f— 6. N(D)f
is an isometric isomorphism, there exists a positive number &k such that
d_x,n(D)f € H(<a,,+>k), o+ k > 0. According to (0.16) and (0.19) f can
be represented in the form f = 6, n(D)fo, fo € Fnu), h= (0 +k)/2.

Taking account of (0.21), (ii) also follows from (0.16) and (0.19). O

ProposITION 2.5. The operation of convolution defined originally
on the dense subset G x O C O’ x G’ is continued by continuity to a
mapping of O’ x G’ into G'.
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Proof. We first of all give a constructive definition of convolution for
f €@ and g € O'. From Lemma 2.4 it follows that there are positive
numbers h;, k and pu € R such that f = 0k nv(D)fo, fo € Fin,,u)-

Similarly, for v > |u|, there are positive numbers hy, s such that

9= JS,N(D)gO; 9o € F(h2,1/)'
Define by the convoluion f * g as follows:

(2.7) f*g=0kysn(D)(fo* g0)

Then (2.7) depends on f and g but does not depend on the way f and
g are represented.
Indeed, if f = 0k, N (D) fg, g =85 n(D)gy , then by (2.7)

Jfoxgo = 53'—s+k'—k,N(D)(f6 * 96)-

Substituting this into (2.7) we conclude that the left-hand side does not
change when k, fo, s and go are replaced by ¥/, f§, s’ and gy, respectively.
If f € Fip,,u) and g € Fip, ,) in (2.7), then we can put k = s =0, i.e,
we arrive at the definition (2.7).
We now show that

{fi—=-fing, gi—gin 0O} = {fi*xg; » fxginG'}.

It follows from the definition of convergence in G’ that there are hy,k
and u such that we have

foj =0k, n(D)f; = 6k, n(D)f = fo € Fn, -
Similarly, given v > |u|, there are hy and s, = s such that
90 = 0_s,N(D)g; — d_sn(D)g = go € Fin, -
Taking equality (2.7) into consideration we obtain
fi *9; = 6,5 (D) foj * 05,8 (D)goj = Sk+s,5 (D)(fos * g05)-

According to Proposition 2.1, the sequence fo; * go; converges in Fy, ,,),
h = min{hq, ha}, which implies the convergence of f; * g; in G'.
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REMARK. Repeating literally the argument in the proposition we
prove that the convolution is continued by continuity from O x G to
G’ x O and
(28) f*g=g*f,f€g’,g€(9'.
We have thus proved that
(2.9) Gg*xO0' cg,0xG cg.

The presented considerations imply

PRoOPOSITION 2.6. If f € Fip, ) and g € H(<SZ> for h > 0, v > |ul,

() ¢>0and

then the convolution f * g belongs to H (i—e)’

(2.10) 1F % gl _ s < const| flenuy gl ).

Proof. Since

exp((u — €)|z[)]0s, v (D)(f * )l

< exp(—elz)) / exp(ulz))| F(& ~ )]160 v (D)g(t)]dt
< exp(—e|z))| £l explule] — plt] — ve — (g1 hs,
it completes the proof. O

PROPOSITION 2.7. Let f € HY), and g € HSBD for v > |u|. Then

((f:te)), € >0 and

+t t
(2.11) 17 % gl S < const|| £S5 gl s

the convolution f x g belongs to H

Proof. Since

exp((1 — )|z])Ssre.n (D)(f * 9)|

exp(—elz|)|| exp(ule| — plt| - viz —t])

x exp(v|z — t))8s,n (D) f(z — )llllg)Ehs

< exp(—elz)| exp(v|z — t))8s ¥ (D) f(z ~ )| 1g] Shs.,

IA
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it completes the proof. a

We also note that the constructed operation of convolution is asso-
ciative and commutative:

(2.12) (frg)xp=gx(fxp)=f*(gx¢p),
where either f € G, ge O, pe Q' or fe O, g0, ped.

To prove (2.12) we approximate f, g, and ¢ with analytic functions,
apply (2.7), and make use of Propositions 2.1 and 2.3.

Note that A: G — G (G’ — G’) is a continuous if and only if for every -
s, i there exist numbers s’, 4’ such that

14¢€)s < Cllell S5, v e g

(140ll) 5 < CllelC)s, ¢ € HE).

A subset B C O will be called regularly bounded if, for some u, B
is contained in H (<°§)> and is bounded in this space, i.e., for each s > 0

there is a constant K, such that

lelE)s < K

for every ¢ € B.

A linear operator A : O — O is called regular if it transforms each
regularly bounded set in O into a regularly bounded set in O.

Note that A linear operator A : O — O is regular if and only if for
each u there exists a number p’ and for each s there exists a number s’
such that

1Al$)s < Cllel S

for every ¢ € H(oo)
A set B C (’)’ is sald to be bounded if for each i there exist numbers
su, K, such that

ol S < K,

for every ¢ € B.
A linear operator A : O’ — (' is said to be regular if for each u there
exists a number 4’ and for each s there exists a number s’ such that

1Al &) < Cllel$

for every p € H<u >-
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PROPOSITION 2.8.
(i) The operator

(2.13) cong:® — Pl — fxyp), feO

is continuous for ® = G, G’ and is regular for ® = O, O'.
(ii) The operators

cong:G' = O (fe€g), cong: 0" - 0O (f € O)

transform bounded sets in G, O into regularly bounded sets in

0.

Taking account of (0.16), (0.19), (0.20) and (0.21), all the assertions
of Proposition 2.8 are consequences of (2.7) and Proposition 2.7.

3. Convolutors in the spaces G, G', O, O’

There is a well-known relationship between the convolution and the
Fourier operator. Namely, if f, g € Ly, then

(3.1) (F(f * 9)(€) = @m)™2F(£)a(€).

This relation also remains valid when f, g € @’. Indeed, by Lemma
2.4, for every p > 0 there are positive numbers ¢t and he such that
g = 6¢,n(D)go, go € Fin,,u), and for v > p there are positive numbers
s, hy such that f = 0, n(D)fo, fo € F(n,.). Then it follows from
Proposition 2.1 that fo * go € Fpy C L1, h = min{hy, ho}. If we
define f % g with the aid of (2.7), we obtain

(2m) "2 (F(f * 9))(E) = Bsta,n (€) Fo(€)0(8) = F(£)3(8).

The operator cony : ® — @, f € O, =G, O, is a PDO with the
symbol (2m)"/2f(&), i.e.,

con; = (2m)"2f(D), fe€ O

By the definition of Dirac’s delta function é(z),

(5,0) = (6,8) = (0) = (2m)™™/2 / o)z = (2r)"3(1, )
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i.e., § = (2r)~"/2, whence é € M. Therefore from Theorem 1.6 we can
see that §(x) € O'. It follows from (3.1) that
frx6=6xf=f

for f € (. This relation is continued by continuity to G’, i.e., cons :
G' — G’ is an identity operator.
Since

(6(z - h), $(x)) = p(h) = (2m) "2 / exp(—i < h,€ >)p(E)de, € G,

the Fourier transform of §(x — k) is equal to (2r)~™2 exp(—i < h,& >),
and hence
(3.2) cong(,—p) = exp(—i < h, D >).

Note that the translation operator 7, : & — ® is continuous for & =
Favys Floow), G and is regular for @ = O. From the definition of the
Fourier operator it follows that

(F(rhe))(€) = exp(—i < h, & >)p(&), v €G.

Comparing this with (3.2) we conclude that the translation operator 75
coincides with the PDO (3.2) on G.

Using the translation operator, the convolution (2.1) can be defined
by means of the relation

(3-3) (f xg9)(@) = (f, = 1g).

If g e ® =G, O, then 7,Ig € ®, and the right-hand side of (3.3)
makes sense for any Fourier hyperfunction f € ®'.

On the other hand, according to Proposition 2.8 (ii), the left-hand
side of (3.3) also exists for f € &' (and belongs to O).

ProposITION 3.1.
(i) Let f € O' and ® = G, O. Then the operators
cong: ® — @, conyy: ®' — P’

are mutually adjoint relative to the canonical duality of ® and
@',
(ii) Let f € G'. Then the operators

cong : 0" = G, conry:G— O

are mutually adjoint.
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Proof. Both the assertions follow from

(3.4) (f*g,0) = (g, 1f ),

where either (a) f € O, ge G, O, o€ G, Oor (b) f e, g¢€
O, peg.

The case (ii) follows from (i) in view of (2.8). To prove (3.4) for the
case (i) we note a useful formula obtained :

(f, ) = (f x 1)(0).
Applying (2.12) we find

(f*xg,0) = ((f *x9) * Ip)(0) = (g * (f * I))(0)
= (g* (I(If*¢))(0) = (g, If x ).

O

A continuous (regular) operator A: ® — &, =G, §' (=0, O)
commutable with any PDO whose symbol belongs to F(V:=>) is called
a convolution operator.

Note that the convolution operator A commutes the translation op-
erator.

THEOREM 3.2. Let & = G, G', O, O'. Then for each convolution
operator A : ® — ® there is a strongly decreasing Fourier hyperfunction
f € O such that

(3.5) Ap = cong(p) = fxp, p€@.

In particular, each convolution operator on ® = G, O is representable
in the form

(3.6) (Ap)(z) = (f,meIp), v €@, f€ O

We begin with proving that each convolution operator on G and O
can be represented as (3.6), and we indicate the functional f.

ProroSITION 3.3. Let ® = G, 0. For each convolution operator
A : ® — ® there is a Fourier hyperfunction f € ® such that A is
represented in the form (3.6).
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Proof. We associate with A a family of linear functionals:

(36/) (fza TacIQO) = (A(p) (CE)

Since the translation performs one-to-one mapping of ® into itself, the
functional (3.6') is defined throughtout the space ®. The proposition
will be proved if we show that

(i) fz is a continuous linear functional, i.e., f, € ®';

(ii) the functional f, does not depend on z : f, = f € &/;

To prove (i) we note that the topologies in G and O are stronger than
the topology of pointwise convergence, and the operator A: & — @ is
continuous (the continuity of A : O — O follows from the regularity of
A).

(ii) follows from the commutability of A with translations. Indeed,
for ¢ € ® we have

(fz, V) = (fo, eI 1Y) := (AT I9) ()
= Tz(AIY)(z) = (AI¥)(0).

g

We note that the proposition implies the validity of the theorem for
® = O; as to & = G, in this case the theorem reduces to the following
assertion:

(3.7) {fed . frpeGpeGt={fec0}.

Let ® be a space of analytic functions invariant with respect to trans-
lations and reflections. Formula (3.6) makes it possible to introduce the
convolution for f € ® and ¢ € ®. A Fourier hyperfunction f € @' is
called a convolutor if f*x ¢ € ® for all ¢ € &. The set of convolutors
will be denoted C(®).

PROPOSITION 3.4.

(i) Each convolution operator Ag : ® — & (® = G, O) is continued
by continuity to a convolution operator A : ¥ — ¥, where ¥ =
O’, G, respectively.

(ii) Let A: ¥ — ¥ (¥ = O, G') be a convolution operator. Then
its restriction Ay to the subspace ® = G, O is a convolution
operation on ®.
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Proof. (i) If ® = G, the continuity of A = cony, f € G', implies that
for every s, v there exist numbers s’ = §'(s,v), v/ = V/(s,v) such that

(3.8) 17 % ollS)s < Kallol ).

In particular, for s = 0 we have

17 % @ll<vs < Kool S50,

Replacing ¢ by d, n(D)y we find

1F %2l S)s = I * 65 v (D)ol <>

< Kullds,N(D)wllf§?3§>

+o(v
= K lell$5es2,

whence, replacing s by s — o(v) we find

”f * 90”<U>U(V)) < const||cp||<)\(u)>, pe g.

Using Proposition 1.8 and the denseness G in O’ we conclude that the
operator cony is continued by continuity to a regular operator on O’.

If ® = O. then, by Proposition 3.3, A = cony,f € ¢, and the
required assertion follows from Proposition 2.5.

(ii) We note that a convolution operator A : ¥ — ¥ commutes with
any PDO 65 n(D).

The regularity of A : @' — O’ implies that for each v there exist a
number v/ and for each s there exist a number s’ such that

145 < constljpllS), .

Similarly, the continuity of A : ¢’ — G’ implies that for every s, v there
exist numbers s,/ such that

14¢l$) < constllel| ).
In particular, for s = 0,

1415 < constllpllcawy> 14lIENrn, < constlell<ys-
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Replacing ¢ by ds n(D)y, we find

14l = (16,5 (D) AR SE) = || A6 v (D)l SL)

< const||ds, v (D)ell<xwy> = const]o )5,

4@ TS = 16, n(D) AR EXD. = 11465 8 (D)l S50,

< const||ds, N (D)ol <v> = C0n5t||90“<u>>
whence replacing s by s — o(v) we find
1461505 < constlil 5752,

14¢)1%) 5 < constlle] &3¢,

meaning that the restriction of A to G (O) is continuous (regular). O
In view of Proposition 3.4, we put
(3.10) C(O") = C(G), C(G’) = C(0).
By Proposition 2.8,
O'ce@), =g, 0, 0, ¢.
From the definition of C(®), we see €(O) C (', and therefore
CO)=C(G) =0
Further, since the Dirac delta function §(z) belongs to (', we have

C(O’") C O, whence
C(G)=¢0)=0"

Hence, Theorem 3.2 is proved, and we see that

(3.11) C(G) = () = 0) =¢(¢) =0
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THEOREM 3.5. Let ® =G, G', O, O and let A € €(®) = O'. The
following two conditions are equivalent.

(I) For any f € ® the convolution equation

possesses a unique solution u € .
(II) Equation (3.12) has a fundamental solution G € C(®) = O':

(3.13) AxG=Gx A=)

Proof. (I) = (II). For & = O’ this assertion is a tautology since
§(z) € O'. In the case ® = G, G’, O, according to the Banach inverse
operator theorem, which holds for Fréchet spaces and their inductive
limits, the condition (I) is equivalent to the existence of a continuous
operator

(3.14) (cong)™t: @ - &, &=¢G, ¢, O.

Since the operator cons commutes with any P DO whose symbol belongs

to F(N:=)  the operator (3.14) possesses the same property. Con-

sequently, (conys)~! is a convolution operator on G, G’, and . By

Theorem 3.2, there is an element G of O’ such that (cons)~! = cong.
By the definition of an inverse operator,

(Ax (G x f))(z) = (G* A) x f)(z) = f(z), feg.
Putting = 0 and using (2.12) we obtain
(AxG,1f)=(G*AIf)=f(0), f€gq,

i.e., (3.13) is fulfilled.

(II) = (I). If G € O satisfies (3.13), then G * f is a solution to
equation (3.13) since Ax (G f) = (A*G) * f = 6 * f = f. Further, if
Axu=0,then 0 =G*(A*u) =(G*xA)*xu=0§*u=u. ie., Equation
(3.13) possesses no more than one solution. O

The operator cong, A € O, has a symbol (27)*/24(¢) € M, and
(II) is equivalent to the following condition

(1) s e M.
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REMARK. According to (1.4), this condition is equivalent to the prop-
erty that for every v > 0 there are real numbers K, s, such that the
esitmate from below

(3.15) |A(Q)| = K, exp(s,[¢]), C €Ty

holds. If cony is a differential operator, i.e., A(z) = P(D)d(z), where
P(¢) is a polynomial, i.e., A(¢) = (2r)~™/2P((), then it follows from
(3.15) that P(¢) # 0, whence P(¢) = const. Therefore there are no
differential operators with constant coefficients satisfying the conditions
of Theorem 3.5.

An entire function a(¢) is called a multiplier on the space G ~ FG =
ﬂh,y>0 F®h) if ap € G, for all ¢ € G. The multipliers form a commuta-
tive algebra which we denote 9(G). Each element a € M(G) generates
an operator in the space G:

(af, ) =(f,a9), f€G, p€Q,

and, by definition, we put 9(G) = M(G").

It follows from Proposition 1.5 that M C 991(G). If a € MM(G), then
the PDO a(D) is defined throughout G, transforms onto ¥G, and com-
mutes with any PDO whose symbol belongs to FN>=%)_ This operator
is continuous:

a’(D)(rD = Erg_lma(C)g‘w-—»CSD(x)
i.e., it is a convolution operator. According to Theorem 3.2, there is
f € O such that
a(D)p = f*ep.
It follows that a(¢)3(¢) = (27)V2f(O)@(¢). Since ¢ € G is arbitrary, it
follows from Theorem 1.6 that

a(¢) = (@m)™2f(¢) € M.

Therefore we obtain
PROPOSITION 3.6. M(G) = M(G') = M.
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