DOI QR코드

DOI QR Code

PDE-PRESERVING PROPERTIES

  • PETERSSON HENRIK (School of Mathematical Sciences Chalmers/Goteborg University)
  • 발행 : 2005.05.01

초록

A continuous linear operator T, on the space of entire functions in d variables, is PDE-preserving for a given set $\mathbb{P}\;\subseteq\;\mathbb{C}|\xi_{1},\ldots,\xi_{d}|$ of polynomials if it maps every kernel-set ker P(D), $P\;{\in}\;\mathbb{P}$, invariantly. It is clear that the set $\mathbb{O}({\mathbb{P}})$ of PDE-preserving operators for $\mathbb{P}$ forms an algebra under composition. We study and link properties and structures on the operator side $\mathbb{O}({\mathbb{P}})$ versus the corresponding family $\mathbb{P}$ of polynomials. For our purposes, we introduce notions such as the PDE-preserving hull and basic sets for a given set $\mathbb{P}$ which, roughly, is the largest, respectively a minimal, collection of polynomials that generate all the PDE-preserving operators for $\mathbb{P}$. We also describe PDE-preserving operators via a kernel theorem. We apply Hilbert's Nullstellensatz.

키워드

참고문헌

  1. R. Aron and D. Markose, On Universal Functions, J. Korean Math. Soc. 41 (2004), 65-76 https://doi.org/10.4134/JKMS.2004.41.1.065
  2. W. Fulton, Algebraic Curves, The Benjamin/Cummings Publ. Comp., Inc., 1978
  3. G. Godefroy and J. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), 229-296 https://doi.org/10.1016/0022-1236(91)90078-J
  4. J. Horvath, Topological Vector Spaces and Distributions, Vol. 1, Addison-Wesley, Reading Massachusetts, 1966
  5. L. Homander, An introduction to complex analysis in several variables (2rd edition), North-Holland Publ. Co., 1979
  6. L. Homander, The Analysis of Linear Partial Differential Operators I (2nd edition), Springer-Verlag, 1990
  7. B. Malgrange, Existence et approximation des solutions des equations aux derivees partielles des equations de convolution, Ann. Inst. Fourier 6 (1955), 271-354
  8. H. Petersson, Interpolation spaces for PDE-preserving projectors on Hilbert- Schmidt entire functions, Rocky Mountain J. Math. 34 (2004), no. 3(Fall), 1059- 1075 https://doi.org/10.1216/rmjm/1181069843
  9. H. Petersson, PDE-Preserving Operators on Smooth Functions, Preprint, Chalmers/Goteborg University, 39 (2003)
  10. H. Petersson, The PDE-preserving operators on the nuclearly entire functions, Acta Math. Hungar. 100 (2003), no. 1-2, 69-81 https://doi.org/10.1023/A:1024604100956
  11. F. Treves, Linear Partial Differential Equations, Gordon and Breach, 1970
  12. J. H. Van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge Uni versity Press, 1992

피인용 문헌

  1. A hypercyclicity criterion with applications vol.327, pp.2, 2007, https://doi.org/10.1016/j.jmaa.2006.05.019
  2. Hypercyclic sequences of PDE-preserving operators vol.138, pp.2, 2006, https://doi.org/10.1016/j.jat.2005.11.004