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ON KENMOTSU MANIFOLDS

JAE-Bok JUN*, UDAY CHAND DE, AND GOUTAM PATHAK

ABSTRACT. The purpose of this paper is to study a Kenmotsu man-
ifold which is derived from the almost contact Riemannian mani-
fold with some special conditions. In general, we have some rela-
tions about semi-symmetric, Ricci semi-symmetric or Weyl semi-
symmetric conditions in Riemannian manifolds. In this paper, we
partially classify the Kenmotsu manifold and consider the mani-
fold admitting a transformation which keeps Riemannian curvature
tensor and Ricci tensor invariant.

1. Introduction

Let (M™,g) (where n = 2m + 1) be an almost contact Riemann-
ian manifold with a contact form 7, the associated vector field &, a
(1,1)-tensor field ¢ and the associated Riemannian metric g. In 1971,
K.Kenmotsu [1] studied a class of contact Riemannian manifolds satisfy-
ing some special conditions. We call it Kenmotsu manifold. Kenmotsu
proved that if in a Kenmotsu manifold the condition R(X,Y)-R =0
holds, then the manifold is of negative curvature -1, where R is the cur-
vature tensor of type (1,3) and R(X,Y) denotes the derivation of the
tensor algebra at each point of the tangent space. A Riemannian man-
ifold satisfying the condition R(X,Y) - R = 0 is called semi-symmetric
[2]. In analogous manner, a Riemannian manifold is called Ricci semi-
symmetric (respectively Weyl semi-symmetric) if R(X,Y)-S = 0 (re-
spectively R(X,Y) - C = 0), where S is the Ricci tensor(respectively
C is the Weyl conformal curvature tensor of type (1,3)) [3]. Though
R(X,Y) R = 0 implies R(X,Y) - S = 0, but the converse is not true,
in general. So it is meaningful to undertake the study of Kenmotsu
manifold satisfying the condition R(X,Y)-S = 0. It is proved that
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if a Kenmotsu manifold is Ricci semi-symmetric, then it is an Einstein
manifold. Next we prove that a Ricci recurrent manifold [4] satisfies the
condition R(X,Y)-S = 0. So we get a theorem on a Ricci recurent Ken-
motsu manifold. Further it is known that every semi-symmetric mani-
fold is Weyl semi-symmetric, but the converse is not true, in general. In
section 4, we consider Weyl semi-symmetric Kenmotsu manifold.

Next we prove that a conformally recurrent manifold is Weyl semi-
symmetric. It is proved that a conformally recurrent Kenmotsu manifold
is locally isometric to the Hyperbolic space H™(1). In section 5, we deal
with Kenmotsu manifold whose Ricci tensor is n-parallel. In section
6, we consider n-Einstein Kenmotsu manifold. In the last section, we
study a Kenmotsu manifold admitting a transformation which keeps
Riemannian curvature tensor and Ricci tensor invariant.

2. Kenmotsu manifold

Let (M™,$,&,7,9) be an n-dimensional(where n = 2m + 1) almost
contact Riemannian manifold, where ¢ is a (1, 1)-tensor field, £ is the
structure vector field, 7 is a 1-form and ¢ is the Riemannian metric. It
is well known that the (¢, £, n, g)-structure satisfies the conditions [5]

(2.2) $*X = —X +n(X)¢, g(X,&) =n(X),
(2.3) 9(¢X,9Y) = g(X,Y) — n(X)n(Y),

for any vector fields X and Y on M™.
If moreover

(2.5) Vx&=X—n(X),

where V denotes the Riemannian connection of g hold, then (M™,¢,£,n
g) is called a Kenmotsu manifold.
In this case, it is well known that [1]

(2.6 R(X,Y)§ =n(X)Y —n(Y)X,

(2.7) S(X,&) = =(n - n(X),

where S denotes the Ricci tensor. From (2.6), it easily follows that
(2.8) R(X,0)Y = g(X,Y)¢{ —n(Y)X,
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(2.9) R(X,£)¢ =n(X)§ — X.
Since S{X,Y) = g(QX,Y), we have
S(¢X,9Y) = g(QeX, ¢Y),
where () is the Ricci operator.

Using the properties g(X, ¢Y) = —g(¢X,Y), Q¢ = ¢Q, (2.2) and
(2.7), we get

(2.10) S(@X,9Y) =S(X,Y)+ (n—1)n(X)n(Y).
Also we have [1]
(2.11) (Vxm)(Y) = 9(X,Y) = n(X)n(Y).

A Kenmotsu manifold M™ is said to be n-Einstein if its Ricci tensor
S is of the form

(2.12) S(X,Y)=ag9(X,Y) + bn(X)n(Y),

for any vector fields X and Y, where a and b are functions on M™.

3. Ricci semi-symmetric Kenmotsu manifold

Let us consider an n-dimensional (n = 2m + 1) Kenmotsu manifold
which satisfies the condition

(3.1) R(X,Y)-S=0.
From (2.6) we have
9(R(X,Y)E, V) =n(X)g(Y,V) —n(Y)g(X, V)

’ —g(R(X,Y)V,€) = n(X)g(Y, V) — n(¥)a(X, V)

or,

(3.2) N(R(X,Y)V) =n(Y)g(X,V) —n(X)g(Y, V).
From (3.1), we get
(3.3) S(R(X,Y)U,V)+S(U,R(X,Y)V)=0.

Putting U = £ in (3.3) and using (2.6), (2.7) and (3.2) we get
n(X)SY, V) —n(Y)S(X,V)
—(n—=1)[(Y)g(X,V) - n(X)g(Y,V)] = 0.
Now putting X = £ in (3.4), we get by using (2.1) and (2.7)
(3.5) S(Y,V) = —(n — g (¥, V).

(3.4)
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Hence we can state the following:

THEOREM 1. A Ricci semi-symmetric Kenmotsu manifold is an Ein-
stein manifold.

Since R(X,Y) - R = 0 implies R(X,Y) - S = 0, we can state the
following corollary.

COROLLARY 1. A semi-symmetric Kenmotsu manifold is an Einstein
manifold.

The above corollary has been proved by K.Kenmotsu in another way

[1].
A Riemannian manifold M™ is said to be Ricci recurrent [4] if the
Ricci tensor S is non-zero and satisfies the condition

(3.6) (VxS)(Y, Z) = o(X)S(Y, Z),
where « is non-zero 1-form.
We now define a function f on M™ by f% = g(Q, Q), where g(QX,Y)

= S(X,Y) and the Riemannian metric g is extended to the inner product
between the tensor fields in the standard fashion. Then we obtain

FYF) = fPa(Y).

So from this we have

(3.7) YF = fa(Y) #0.
From (3.7), we have
(3-8) XY f)-Y(Xf) = {X(Y) - Y(X)}f.

Therefore we get
(3.9) {VxVy —VyVx = Vixy)}f = {Xa(Y) - Ya(X) — oX, Y]}f.

Since the left hand side of the above equation is identically zero and
f # 0 on M™ by our assumption, we obtain

(3.10) da(X,Y) =0,

that is, the 1-form « is closed. Now from (Vy S)(U,V) = a(Y)S(U,V),
we get

(VxVyS)(U, V) ={XalY)+ a(X)a(Y)}S(U,V).
Hence from (3.10), we get
(R(X,Y)- S)(U,V) = 2da(X,Y)S(U, V).
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That is, our manifold satisfies R(X,Y) - S = 0. Thus a Ricci recurrent
manifold is Ricci semi-symmetric. Hence from Theorem 1, we can state
the following:

THEOREM 2. A Ricci recurrent Kenmotsu manifold is an FEinstein
manifold.

4. Kenmotsu manifold satisfying certain condition on the
conformal curvature tensor

In [1] it is proved that a conformally flat Kenmotsu manifold is a
manifold of constant negative curvature -1.

Again it is known [6] that a manifold of constant negative curvature-1
is locally isometric with the hyperbolic space H"(1). Now we state the
following theorem [6]:

THEOREM 3. A Weyl semi-symmetric Kenmotsu manifold M™ (n >
3) is conformally flat.

Since the proof of this theorem is done by the same method as M.C.
Chaki and M.Tarafdar proved the theorem in section 2 in [7], we shall
omit it here.

Since a conformally flat Kenmotsu manifold is locally isometric with
H™(1), we can restate the theorem 3 as follows: “An n-dimensional
(n > 3) Weyl semi-symmetric Kenmotsu manifold is locally isometric
with the hyperbolic space H™(1).”

A non-conformally flat Riemannian manifold M™ is called confor-
mally recurrent [8] if the conformal curvature tensor C satisfies the con-
dition VC' = o ® C, where « is an everywhere non-zero 1-form. As in
section 3, we can prove that a conformally recurrent Riemannian mani-
fold satisfies R(X,Y’) - C = 0. Hence we can state the following:

COROLLARY 2. A conformally recurrent Kenmotsu manifold is lo-
cally isometric with the hyperbolic space H™(1).

5. Kenmotsu manifold with n-parallel Ricci tensor

DEFINITION. The Ricci tensor S of a Kenmotsu manifold M™ is
called n-parallel, if it satisfies

(5.1) (VxS)(¢Y,9Z) =0,
for all vector fields X,Y and Z.



440 Jae-Bok Jun, Uday Chand De, and Goutam Pathak

The notion of Ricci n-parallelity for the Sasakian manifolds was in-
troduced by M. Kon [9)].

Now, let us consider an n-dimensional Kenmotsu manifold M™ with
n-parallel Ricci tensor. We have

= Vx8(¢Y,¢Z) — S(Vx¢Y,¢Z) — S(¢Y,VxdZ).
Using (2.4), (2.7), (2.10) and n(¢X) =0 in (5.2), we get

(5.2)

(VxS)(¢Y, ¢2)
= VxS(Y,2Z) + (n — D{n(Z)Vxn(Y) + n(Y)Vxn(2)}
(5.3) +n(Y){S(X, 2) + (n = Dn(X)n(2)}

+(Z2){SY. X) + (n — Un(Y)n(X)} - S(VxY, Z)
~S(Y,VxZ) = (n—1){n(Z)n (VXY) +n(Y)n(Vx2)}.
Also,
(5-4) (Vxm(Y) = Vxn(Y) —n(VxY),
and
(5.5) VxS(Y,2) = (VxS)Y,Z)+ S(VxY,Z)+ S(Y,VxZ).
By virtue of (2.11), (5.4) and (5.5) and owing to (5.3), we get
(VxS)(9Y,92)
(5.6) = (VxS)(Y, Z) + (n — D{g(X,Y)n(Z)
+9(X, Z)n(Y)} + {n(Y)S(X, Z) + n(2)S(Y, X)}-
Using (5.1) in (5.6), we get

(VxS)(Y,2)
(5.7) = — (n—1{g(Y, X)n(Z) + 9(Z, X)n(Y)}
— {n(Y)S(Z,X) +n(2)S(Y, X)}.
Hence we can state the following:

PROPOSITION 4. A Kenmotsu manifold M™($,n,€,g) has n-parallel
Ricci tensor if and only if (5.7) holds.

Now let {e;} be an orthonormal basis of the tangent space at each
point of the manifold M™ for i = 1,2, ...,n. Putting Y = Z = ¢; in (5.7)
and then taking summation over the index ¢, we get

(5.8) dr(X) =0,
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which implies that r is constant, where r denotes the scalar curvature
of the manifold M™. Thus we can state the following:

THEOREM 5. If a Kenmotsu manifold M™ has n-parallel Ricci tensor,
then the scalar curvature Is constant.

6. n-Einstein Kenmotsu manifold

In [1], it is proved that if a Kenmotsu manifold is 7-Einstein, then
a+ b= —(n—1). Here we prove that a and b are both constant.

Let us consider an n-Einstein Kenmotsu manifold. Then putting
X =Y =¢€;in(2.12),7= 1,2, ...,n and taking summation for 1 < < n,
we have

(6.1) r=an+b,

where r is the scalar curvature. On the other hand, putting X =Y =¢
in (2.12) and then using (2.7) and (2.1) we get

(6.2) a+b=—(n—-1).
Hence it follows from (6.1) and (6.2) that

-—Tr

(6.3) a:n—l ) b=y

— 1.

Thus we have

LEMMA 6. The Ricci tensor of an n-FEinstein Kenmotsu manifold is
given by

(6.4) S(X,Y)= {ﬁ + l}g(X, Y)+ {% - n}n(X)n(Y).

Now we consider an 7-Einstein Kenmotsu manifold M™(n > 3) which
is not an Einstein one. Then differentiating (6.4) covariantly along Z
and using (2.11) we get

(VzS)(X,Y)
dr(Z)
5) {n 1} X,Y) = n(X)n(¥)}
+{n —n}{g(Z Xn(Y) —9(Z,Y)n(X)}.
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Putting X =Y = ¢; in (6.5) and taking summation for 1 < ¢ < n,
we have
(n—2)dr(Z) =0.
If n > 3, we get r is constant. Thus a and b are both constants. This
leads to the following:

THEOREM 7. If a Kenmotsu manifold is n-Einstein, then a and b are
both constants.

From Corollary 9 of Proposition 8 of Kenmotsu [1] we get the follow-
ing:

COROLLARY 3. An n-Einstein Kenmotsu manifold is an Einstein one.

7. Some transformations in Kenmotsu manifold

We now consider a transformation y which transform a Kenmotsu
structure (¢, &,7, g) into another Kenmotsu structure (¢, £,7,7). We de-
note by the notation “bar” the geometric objects which are transformed
by the transformation u.

We first suppose that in a Kenmotsu manifold the Riemannian cur-
vature tensor is invariant with respect to the transformation y. Thus
we have

(7.1) R(X,Y)Z = R(X,Y)Z,

for all X,Y and Z. This gives n(R(X,Y)Z) = n(R(X,Y)Z), and hence
by virtue of (3.2) we get

(7:2) n(Y)g(X, 2) — n(X)g(Y, 2) = n(R(X,Y)Z).
Putting Y = £ in (7.2) and then using (2.8) we obtain

(73)  n(€)g(X,2) - n(X)g(§ 2) =n(€)3(X, Z) - 7(Z)n(X).
Interchanging X and Z in (7.3), it follows

(7.4) 1(€)9(X, Z) - n(Z)g(€, X) = n(©)3(X, Z) - W(X)n(Z).
Subtracting (7.4) from (7.3) we obtain

(7.5) 0(Z)9(&, X) — 9(&, Z)n(X) = 7(X)n(Z) — 7(Z)n(X).
Substituting £ for Z in (7.5), we obtain by using (2.1)

(7.6) 9(&, X) — 9(& E)n(X) =7(X) — 7(&)n(X).
Also from (7.1) we have

5(X,Y) = 8(X,Y)



On Kenmotsu manifolds 443

and hence o B
5(§,€) = 5(¢,¢)-
This gives by virtue of (2.7) that

(7.7) (€) = n(€)-
Using (7.7) in (7.6) and since n(€) = g(€, £) we get
(7.8) (X) = g€ X).

By virtue of (7.8) we get from (7.4)

{9(X,2) - 3(X, Z)}n(€) = 0.
This implies
9(X,Z2) =g(X, Z)
for all X and Z, if n(£) # 0. Hence we can state the following:

THEOREM 8. In a Kenmotsu manifold (M™, g), the transformation
which leaves the curvature tensor invariant and n(€) # 0 is an isometry.

Again a vector field V on a contact manifold with contact form 7 is
said to be an infinitesimal contact transformation [10] if V satisfies

(7.9) (Lvm)X = on(X),

for a scalar function o, where Ly denotes the Lie differentiation with
respect to V. Especially, if o vanishes identically, then it is called an
infinitesimal strict contact transformation [10].

Let us now suppose that in a Kenmotsu manifold, the infinitesimal
contact transformation leaves the Ricci tensor invariant. Then we have

(LyS)(X,Y) =0,
which gives
(7.10) (LyS)(X,€) = 0.
We have
(7.11)  (LvS)(X, ) = Lv(5(X,§)) — S(Lv X, &) — S(X, Ly¢).
By virtue of (2.7) and (7.10) we get from (7.11)

(7.12) (n = 1)(Lym)(X) + S(X, Ly€) = 0.
Using (7.9) in (7.12), we obtain
(7.13) S(X,Ly&) = —(n—1)on(X).

Substituting £ for X in (7.13) and using (2.7), we get
(7.14) n(Lv€) = o.
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Again substituting £ for X in (7.9), we have (Lyn)(€) = o, that is,

(7.15) Ly (n(§)) — n(Lv€) = 0.
By virtue of (7.14) and (7.15) we get
o=0.

Thus we can state the following:

THEOREM 9. In a Kenmotsu manifold, the infinitesimal contact
transformation which leaves the Ricci tensor invariant is an infinites-
imal strict contact transformation.
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