## ON KENMOTSU MANIFOLDS

JAE-BOK JUN\*, UDAY CHAND DE, AND GOUTAM PATHAK

ABSTRACT. The purpose of this paper is to study a Kenmotsu manifold which is derived from the almost contact Riemannian manifold with some special conditions. In general, we have some relations about semi-symmetric, Ricci semi-symmetric or Weyl semi-symmetric conditions in Riemannian manifolds. In this paper, we partially classify the Kenmotsu manifold and consider the manifold admitting a transformation which keeps Riemannian curvature tensor and Ricci tensor invariant.

## 1. Introduction

Let  $(M^n, q)$  (where n = 2m + 1) be an almost contact Riemannian manifold with a contact form  $\eta$ , the associated vector field  $\xi$ , a (1,1)-tensor field  $\phi$  and the associated Riemannian metric q. In 1971, K.Kenmotsu [1] studied a class of contact Riemannian manifolds satisfying some special conditions. We call it Kenmotsu manifold. Kenmotsu proved that if in a Kenmotsu manifold the condition  $R(X,Y) \cdot R = 0$ holds, then the manifold is of negative curvature -1, where R is the curvature tensor of type (1,3) and R(X,Y) denotes the derivation of the tensor algebra at each point of the tangent space. A Riemannian manifold satisfying the condition  $R(X,Y) \cdot R = 0$  is called *semi-symmetric* [2]. In analogous manner, a Riemannian manifold is called Ricci semisymmetric (respectively Weyl semi-symmetric) if  $R(X,Y) \cdot S = 0$  (respectively  $R(X,Y) \cdot C = 0$ , where S is the Ricci tensor(respectively C is the Weyl conformal curvature tensor of type (1,3) [3]. Though  $R(X,Y) \cdot R = 0$  implies  $R(X,Y) \cdot S = 0$ , but the converse is not true, in general. So it is meaningful to undertake the study of Kenmotsu manifold satisfying the condition  $R(X,Y) \cdot S = 0$ . It is proved that

Received April 2, 2003.

<sup>2000</sup> Mathematics Subject Classification: 53C25.

Key words and phrases: Ricci semi-symmetric Kenmotsu manifold, Weyl semi-symmetric Kenmotsu manifold,  $\eta$ -Einstein manifold,  $\eta$ -parallel Ricci tensor.

<sup>\*</sup>This work is partially supported by KMU.

if a Kenmotsu manifold is Ricci semi-symmetric, then it is an Einstein manifold. Next we prove that a Ricci recurrent manifold [4] satisfies the condition  $R(X,Y)\cdot S=0$ . So we get a theorem on a Ricci recurrent Kenmotsu manifold. Further it is known that every semi-symmetric manifold is Weyl semi-symmetric, but the converse is not true, in general. In section 4, we consider Weyl semi-symmetric Kenmotsu manifold.

Next we prove that a conformally recurrent manifold is Weyl semi-symmetric. It is proved that a conformally recurrent Kenmotsu manifold is locally isometric to the Hyperbolic space  $H^n(1)$ . In section 5, we deal with Kenmotsu manifold whose Ricci tensor is  $\eta$ -parallel. In section 6, we consider  $\eta$ -Einstein Kenmotsu manifold. In the last section, we study a Kenmotsu manifold admitting a transformation which keeps Riemannian curvature tensor and Ricci tensor invariant.

### 2. Kenmotsu manifold

Let  $(M^n, \phi, \xi, \eta, g)$  be an *n*-dimensional (where n = 2m + 1) almost contact Riemannian manifold, where  $\phi$  is a (1,1)-tensor field,  $\xi$  is the structure vector field,  $\eta$  is a 1-form and g is the Riemannian metric. It is well known that the  $(\phi, \xi, \eta, g)$ -structure satisfies the conditions [5]

(2.1) 
$$\phi \xi = 0, \ \eta(\phi X) = 0, \ \eta(\xi) = 1,$$

(2.2) 
$$\phi^2 X = -X + \eta(X)\xi, \ g(X,\xi) = \eta(X),$$

(2.3) 
$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$

for any vector fields X and Y on  $M^n$ .

If moreover

(2.4) 
$$(\nabla_X \phi) Y = -g(X, \phi Y) \xi - \eta(Y) \phi X,$$

(2.5) 
$$\nabla_X \xi = X - \eta(X)\xi,$$

where  $\nabla$  denotes the Riemannian connection of g hold, then  $(M^n, \phi, \xi, \eta g)$  is called a *Kenmotsu manifold*.

In this case, it is well known that [1]

$$(2.6) R(X,Y)\xi = \eta(X)Y - \eta(Y)X,$$

(2.7) 
$$S(X,\xi) = -(n-1)\eta(X),$$

where S denotes the Ricci tensor. From (2.6), it easily follows that

(2.8) 
$$R(X,\xi)Y = g(X,Y)\xi - \eta(Y)X,$$

$$(2.9) R(X,\xi)\xi = \eta(X)\xi - X.$$

Since S(X,Y) = g(QX,Y), we have

$$S(\phi X, \phi Y) = g(Q\phi X, \phi Y),$$

where Q is the Ricci operator.

Using the properties  $g(X, \phi Y) = -g(\phi X, Y), \ Q\phi = \phi Q$ , (2.2) and (2.7), we get

(2.10) 
$$S(\phi X, \phi Y) = S(X, Y) + (n-1)\eta(X)\eta(Y).$$

Also we have [1]

$$(2.11) \qquad (\nabla_X \eta)(Y) = g(X, Y) - \eta(X)\eta(Y).$$

A Kenmotsu manifold  $M^n$  is said to be  $\eta$ -Einstein if its Ricci tensor S is of the form

$$(2.12) S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y),$$

for any vector fields X and Y, where a and b are functions on  $M^n$ .

# 3. Ricci semi-symmetric Kenmotsu manifold

Let us consider an n-dimensional (n = 2m + 1) Kenmotsu manifold which satisfies the condition

$$(3.1) R(X,Y) \cdot S = 0.$$

From (2.6) we have

$$q(R(X,Y)\xi,V) = \eta(X)q(Y,V) - \eta(Y)q(X,V)$$

or,

$$-g(R(X,Y)V,\xi) = \eta(X)g(Y,V) - \eta(Y)g(X,V)$$

or,

(3.4)

(3.2) 
$$\eta(R(X,Y)V) = \eta(Y)g(X,V) - \eta(X)g(Y,V).$$

From (3.1), we get

(3.3) 
$$S(R(X,Y)U,V) + S(U,R(X,Y)V) = 0.$$

Putting  $U = \xi$  in (3.3) and using (2.6), (2.7) and (3.2) we get

$$\eta(X)S(Y,V) - \eta(Y)S(X,V) - (n-1)[\eta(Y)q(X,V) - \eta(X)q(Y,V)] = 0.$$

Now putting  $X = \xi$  in (3.4), we get by using (2.1) and (2.7)

(3.5) 
$$S(Y,V) = -(n-1)g(Y,V).$$

Hence we can state the following:

Theorem 1. A Ricci semi-symmetric Kenmotsu manifold is an Einstein manifold.

Since  $R(X,Y) \cdot R = 0$  implies  $R(X,Y) \cdot S = 0$ , we can state the following corollary.

COROLLARY 1. A semi-symmetric Kenmotsu manifold is an Einstein manifold.

The above corollary has been proved by K.Kenmotsu in another way [1].

A Riemannian manifold  $M^n$  is said to be *Ricci recurrent* [4] if the Ricci tensor S is non-zero and satisfies the condition

$$(3.6) \qquad (\nabla_X S)(Y, Z) = \alpha(X)S(Y, Z),$$

where  $\alpha$  is non-zero 1-form.

We now define a function f on  $M^n$  by  $f^2 = g(Q, Q)$ , where g(QX, Y) = S(X, Y) and the Riemannian metric g is extended to the inner product between the tensor fields in the standard fashion. Then we obtain

$$f(Yf) = f^2 \alpha(Y).$$

So from this we have

$$(3.7) Yf = f\alpha(Y) \neq 0.$$

From (3.7), we have

$$(3.8) X(Yf) - Y(Xf) = \{X\alpha(Y) - Y\alpha(X)\}f.$$

Therefore we get

$$(3.9) \{\nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]}\} f = \{X\alpha(Y) - Y\alpha(X) - \alpha[X,Y]\} f.$$

Since the left hand side of the above equation is identically zero and  $f \neq 0$  on  $M^n$  by our assumption, we obtain

$$(3.10) d\alpha(X,Y) = 0,$$

that is, the 1-form  $\alpha$  is closed. Now from  $(\nabla_Y S)(U, V) = \alpha(Y)S(U, V)$ , we get

$$(\nabla_X \nabla_Y S)(U, V) = \{X\alpha(Y) + \alpha(X)\alpha(Y)\}S(U, V).$$

Hence from (3.10), we get

$$(R(X,Y)\cdot S)(U,V)=2d\alpha(X,Y)S(U,V).$$

That is, our manifold satisfies  $R(X,Y) \cdot S = 0$ . Thus a Ricci recurrent manifold is Ricci semi-symmetric. Hence from Theorem 1, we can state the following:

Theorem 2. A Ricci recurrent Kenmotsu manifold is an Einstein manifold.

# 4. Kenmotsu manifold satisfying certain condition on the conformal curvature tensor

In [1] it is proved that a conformally flat Kenmotsu manifold is a manifold of constant negative curvature -1.

Again it is known [6] that a manifold of constant negative curvature-1 is locally isometric with the hyperbolic space  $H^n(1)$ . Now we state the following theorem [6]:

Theorem 3. A Weyl semi-symmetric Kenmotsu manifold  $M^n$  (n > 3) is conformally flat.

Since the proof of this theorem is done by the same method as M.C. Chaki and M.Tarafdar proved the theorem in section 2 in [7], we shall omit it here.

Since a conformally flat Kenmotsu manifold is locally isometric with  $H^n(1)$ , we can restate the theorem 3 as follows: "An n-dimensional (n > 3) Weyl semi-symmetric Kenmotsu manifold is locally isometric with the hyperbolic space  $H^n(1)$ ."

A non-conformally flat Riemannian manifold  $M^n$  is called *conformally recurrent* [8] if the conformal curvature tensor C satisfies the condition  $\nabla C = \alpha \otimes C$ , where  $\alpha$  is an everywhere non-zero 1-form. As in section 3, we can prove that a conformally recurrent Riemannian manifold satisfies  $R(X,Y) \cdot C = 0$ . Hence we can state the following:

COROLLARY 2. A conformally recurrent Kenmotsu manifold is locally isometric with the hyperbolic space  $H^n(1)$ .

## 5. Kenmotsu manifold with $\eta$ -parallel Ricci tensor

DEFINITION. The Ricci tensor S of a Kenmotsu manifold  $M^n$  is called  $\eta$ -parallel, if it satisfies

$$(5.1) \qquad (\nabla_X S)(\phi Y, \phi Z) = 0,$$

for all vector fields X, Y and Z.

The notion of Ricci  $\eta$ -parallelity for the Sasakian manifolds was introduced by M. Kon [9].

Now, let us consider an n-dimensional Kenmotsu manifold  $M^n$  with n-parallel Ricci tensor. We have

(5.2) 
$$(\nabla_{X}S)(\phi Y, \phi Z) = \nabla_{X}S(\phi Y, \phi Z) - S(\nabla_{X}\phi Y, \phi Z) - S(\phi Y, \nabla_{X}\phi Z).$$
Using (2.4), (2.7), (2.10) and  $\eta(\phi X) = 0$  in (5.2), we get
$$(\nabla_{X}S)(\phi Y, \phi Z) = \nabla_{X}S(Y, Z) + (n-1)\{\eta(Z)\nabla_{X}\eta(Y) + \eta(Y)\nabla_{X}\eta(Z)\}$$
(5.3) 
$$+ \eta(Y)\{S(X, Z) + (n-1)\eta(X)\eta(Z)\} + \eta(Z)\{S(Y, X) + (n-1)\eta(Y)\eta(X)\} - S(\nabla_{X}Y, Z) - S(Y, \nabla_{X}Z) - (n-1)\{\eta(Z)\eta(\nabla_{X}Y) + \eta(Y)\eta(\nabla_{X}Z)\}.$$

Also.

(5.4) 
$$(\nabla_X \eta)(Y) = \nabla_X \eta(Y) - \eta(\nabla_X Y),$$

and

(5.6)

$$(5.5) \qquad \nabla_X S(Y,Z) = (\nabla_X S)(Y,Z) + S(\nabla_X Y,Z) + S(Y,\nabla_X Z).$$

By virtue of (2.11), (5.4) and (5.5) and owing to (5.3), we get  $(\nabla_X S)(\phi Y, \phi Z)$ 

$$= (\nabla_X S)(Y, Z) + (n-1)\{g(X, Y)\eta(Z) + g(X, Z)\eta(Y)\} + \{\eta(Y)S(X, Z) + \eta(Z)S(Y, X)\}.$$

Using (5.1) in (5.6), we get

(5.7) 
$$(\nabla_X S)(Y, Z)$$

$$= -(n-1)\{g(Y, X)\eta(Z) + g(Z, X)\eta(Y)\}$$

$$-\{\eta(Y)S(Z, X) + \eta(Z)S(Y, X)\}.$$

Hence we can state the following:

PROPOSITION 4. A Kenmotsu manifold  $M^n(\phi, \eta, \xi, g)$  has  $\eta$ -parallel Ricci tensor if and only if (5.7) holds.

Now let  $\{e_i\}$  be an orthonormal basis of the tangent space at each point of the manifold  $M^n$  for i = 1, 2, ..., n. Putting  $Y = Z = e_i$  in (5.7) and then taking summation over the index i, we get

$$(5.8) dr(X) = 0,$$

which implies that r is constant, where r denotes the scalar curvature of the manifold  $M^n$ . Thus we can state the following:

Theorem 5. If a Kenmotsu manifold  $M^n$  has  $\eta$ -parallel Ricci tensor, then the scalar curvature is constant.

# 6. n-Einstein Kenmotsu manifold

In [1], it is proved that if a Kenmotsu manifold is  $\eta$ -Einstein, then a+b=-(n-1). Here we prove that a and b are both constant.

Let us consider an  $\eta$ -Einstein Kenmotsu manifold. Then putting  $X = Y = e_i$  in (2.12), i = 1, 2, ..., n and taking summation for  $1 \le i \le n$ , we have

$$(6.1) r = an + b.$$

where r is the scalar curvature. On the other hand, putting  $X = Y = \xi$  in (2.12) and then using (2.7) and (2.1) we get

$$(6.2) a+b=-(n-1).$$

Hence it follows from (6.1) and (6.2) that

(6.3) 
$$a = \frac{r}{n-1} + 1, \ b = \frac{-r}{n-1} - n.$$

Thus we have

Lemma 6. The Ricci tensor of an  $\eta$ -Einstein Kenmotsu manifold is given by

(6.4) 
$$S(X,Y) = \left\{ \frac{r}{n-1} + 1 \right\} g(X,Y) + \left\{ \frac{-r}{n-1} - n \right\} \eta(X) \eta(Y).$$

Now we consider an  $\eta$ -Einstein Kenmotsu manifold  $M^n(n > 3)$  which is not an Einstein one. Then differentiating (6.4) covariantly along Z and using (2.11) we get

(6.5) 
$$(\nabla_{Z}S)(X,Y) = \left\{ \frac{dr(Z)}{n-1} \right\} \{ g(X,Y) - \eta(X)\eta(Y) \} + \left\{ \frac{-r}{n-1} - n \right\} \{ g(Z,X)\eta(Y) - g(Z,Y)\eta(X) \}.$$

Putting  $X = Y = e_i$  in (6.5) and taking summation for  $1 \le i \le n$ , we have

$$(n-2)dr(Z) = 0.$$

If n > 3, we get r is constant. Thus a and b are both constants. This leads to the following:

THEOREM 7. If a Kenmotsu manifold is  $\eta$ -Einstein, then a and b are both constants.

From Corollary 9 of Proposition 8 of Kenmotsu [1] we get the following:

COROLLARY 3. An  $\eta$ -Einstein Kenmotsu manifold is an Einstein one.

#### 7. Some transformations in Kenmotsu manifold

We now consider a transformation  $\mu$  which transform a Kenmotsu structure  $(\phi, \xi, \eta, g)$  into another Kenmotsu structure  $(\overline{\phi}, \overline{\xi}, \overline{\eta}, \overline{g})$ . We denote by the notation "bar" the geometric objects which are transformed by the transformation  $\mu$ .

We first suppose that in a Kenmotsu manifold the Riemannian curvature tensor is invariant with respect to the transformation  $\mu$ . Thus we have

(7.1) 
$$\overline{R}(X,Y)Z = R(X,Y)Z,$$

for all X,Y and Z. This gives  $\eta(\overline{R}(X,Y)Z)=\eta(R(X,Y)Z)$ , and hence by virtue of (3.2) we get

(7.2) 
$$\eta(Y)g(X,Z) - \eta(X)g(Y,Z) = \eta(\overline{R}(X,Y)Z).$$

Putting  $Y = \overline{\xi}$  in (7.2) and then using (2.8) we obtain

(7.3) 
$$\eta(\overline{\xi})g(X,Z) - \eta(X)g(\overline{\xi},Z) = \eta(\overline{\xi})\overline{g}(X,Z) - \overline{\eta}(Z)\eta(X).$$

Interchanging X and Z in (7.3), it follows

(7.4) 
$$\eta(\overline{\xi})g(X,Z) - \eta(Z)g(\overline{\xi},X) = \eta(\overline{\xi})\overline{g}(X,Z) - \overline{\eta}(X)\eta(Z).$$
  
Subtracting (7.4) from (7.3) we obtain

(7.5) 
$$\eta(Z)g(\overline{\xi},X) - g(\overline{\xi},Z)\eta(X) = \overline{\eta}(X)\eta(Z) - \overline{\eta}(Z)\eta(X).$$
 Substituting  $\xi$  for  $Z$  in (7.5), we obtain by using (2.1)

(7.6) 
$$g(\overline{\xi}, X) - g(\overline{\xi}, \xi)\eta(X) = \overline{\eta}(X) - \overline{\eta}(\xi)\eta(X).$$

Also from (7.1) we have

$$\overline{S}(X,Y) = S(X,Y)$$

and hence

$$\overline{S}(\xi,\overline{\xi}) = S(\xi,\overline{\xi}).$$

This gives by virtue of (2.7) that

(7.7) 
$$\overline{\eta}(\xi) = \eta(\overline{\xi}).$$

Using (7.7) in (7.6) and since  $\eta(\overline{\xi}) = q(\overline{\xi}, \xi)$  we get

(7.8) 
$$\overline{\eta}(X) = g(\overline{\xi}, X).$$

By virtue of (7.8) we get from (7.4)

$${g(X,Z) - \overline{g}(X,Z)}\eta(\overline{\xi}) = 0.$$

This implies

$$g(X,Z) = \overline{g}(X,Z)$$

for all X and Z, if  $\eta(\overline{\xi}) \neq 0$ . Hence we can state the following:

THEOREM 8. In a Kenmotsu manifold  $(M^n, g)$ , the transformation  $\mu$  which leaves the curvature tensor invariant and  $\eta(\overline{\xi}) \neq 0$  is an isometry.

Again a vector field V on a contact manifold with contact form  $\eta$  is said to be an *infinitesimal contact transformation* [10] if V satisfies

$$(7.9) (L_V \eta) X = \sigma \eta(X),$$

for a scalar function  $\sigma$ , where  $L_V$  denotes the Lie differentiation with respect to V. Especially, if  $\sigma$  vanishes identically, then it is called an infinitesimal strict contact transformation [10].

Let us now suppose that in a Kenmotsu manifold, the infinitesimal contact transformation leaves the Ricci tensor invariant. Then we have

$$(L_V S)(X, Y) = 0,$$

which gives

$$(7.10) (L_V S)(X, \xi) = 0.$$

We have

$$(7.11) (L_V S)(X,\xi) = L_V(S(X,\xi)) - S(L_V X,\xi) - S(X,L_V \xi).$$

By virtue of (2.7) and (7.10) we get from (7.11)

$$(7.12) (n-1)(L_V\eta)(X) + S(X, L_V\xi) = 0.$$

Using (7.9) in (7.12), we obtain

(7.13) 
$$S(X, L_V \xi) = -(n-1)\sigma \eta(X).$$

Substituting  $\xi$  for X in (7.13) and using (2.7), we get

(7.14) 
$$\eta(L_V\xi) = \sigma.$$

Again substituting  $\xi$  for X in (7.9), we have  $(L_V \eta)(\xi) = \sigma$ , that is,

(7.15) 
$$L_V(\eta(\xi)) - \eta(L_V \xi) = \sigma.$$

By virtue of (7.14) and (7.15) we get

$$\sigma = 0$$
.

Thus we can state the following:

THEOREM 9. In a Kenmotsu manifold, the infinitesimal contact transformation which leaves the Ricci tensor invariant is an infinitesimal strict contact transformation.

### References

- [1] K. Kenmotsu, A class of contact Riemannian manifold, Tohoku Math. Jour. 24 (1972), 93-103.
- [2] Z.I. Szabo, Structure theorem on Riemannian spaces satisfying  $R(X,Y) \cdot R = 0$ , I. The local version, J. Differential Geom. 17 (1982), 531–582.
- [3] L. Verstraelen, Comments on pseudo-symmetry in the sence of R. Deszcz, Geometry and Topology of submanifolds VI, World Scientific, 1933, 199–209.
- [4] E.M. Patterson, Some theorems on Ricci recurrent spaces, J. London Math. Soc. 27 (1952), 287–295.
- [5] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics 509, Springer-Verlag, Berlin, 1976.
- [6] B. ONeil, Semi-Riemannian geometry with application to relativity, Academic Press, p. 208.
- [7] M.C. Chaki and M. Tarafdar, On a type of Sasakian manifold, Soochow J. Math. 16 (1990), 23–28.
- [8] T. Adati and T. Miyazawa, On a Riemannian space with recurrent conformal curvature, Tensor (N.S.) 18 (1967), 348–354.
- [9] M. Kon, Invariant submanifolds in Sasakian manifolds, Math. Ann. 219 (1976), 277-290.
- [10] S. Sasaki, Lecture notes on almost contact manifolds, Part II, Tohoku University, 1967.

Jae-Bok Jun
Department of Mathematics
College of Natural Science
Kookmin University
Seoul 136-702, Korea
E-mail: jbjun@kookmin.ac.kr

Uday Chand De and Goutam Pathak Department of Mathematics University of Kalyani Kalyani 741235, West Bengal, India

E-mail: ucde@klyuniv.ernet.in