가변 시간 골드스미트 부동소수점 나눗셈기

A Variable Latency Goldschmidt's Floating Point Number Divider

  • 김성기 (부경대학교 전자컴퓨터정보통신공학부) ;
  • 송홍복 (동의대학교 전자정보통신공학부) ;
  • 조경연 (부경대학교 전자컴퓨터정보통신공학부)
  • 발행 : 2005.04.01

초록

부동소수점 나눗셈에서 많이 사용하는 골드스미트 나눗셈 알고리즘은 일정한 횟수의 곱셈을 반복한다. 본 논문에서는 오차가 정해진 값보다 작아질 때까지 곱셈을 반복하여 나눗셈을 수행하는 가변 시간 골드스미트 부동소수점 나눗셈 알고리즘을 제안한다. 부동소수점 나눗셈 ‘$\frac{N}{F}$'는 'T=$\frac{1}{F}+e_t$'를 분모와 분자에 곱하면 ’$\frac{TN}{TF}=\frac{N_0}{F_0}$'가 된다. ’$R_i=(2-e_r-F_i),\;N_{i+1}=N_i{\ast}R_i,\;F_{i+1}=F_i{\ast}R_i$, i$\in${0,1,...n-1}'를 반복한다. 중간 곱셈 결과는 소수점이하 p 비트 미만을 절삭하며, 절삭 오차는 ‘$e_r=2^{-p}$', 보다 작다. p는 단정도실수에서 29, 배정도실수에서 59이다. ’$F_i=1+e_i$'이라고 하면 ‘$F_{i+1}=1-e_{i+1},\;e_{i+1},\;e_{i+1}'이 된다. '$[F_i-1]<2^{\frac{-p+3}{2}}$'이면, ’$e_{i+1}<16e_r$'이 부동소수점으로 표현 가능한 최소값보다 작아지며, ‘$N_{i+1}\risingdotseq\frac{N}{F}$이다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 도출하고, 여러 크기의 근사 역수 테이블($T=\frac{1}{F}+e_t$)에서 단정도실수 및 배정도실수의 나눗셈 계산에 필요한 평균 곱셈 횟수를 계산한다. 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복 연산을 수행하므로 나눗셈기의 성능을 높일 수 있다. 또한 최적의 근사 역수 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그라픽스,, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.

The Goldschmidt iterative algorithm for a floating point divide calculates it by performing a fixed number of multiplications. In this paper, a variable latency Goldschmidt's divide algorithm is proposed, that performs multiplications a variable number of times until the error becomes smaller than a given value. To calculate a floating point divide '$\frac{N}{F}$', multifly '$T=\frac{1}{F}+e_t$' to the denominator and the nominator, then it becomes ’$\frac{TN}{TF}=\frac{N_0}{F_0}$'. And the algorithm repeats the following operations: ’$R_i=(2-e_r-F_i),\;N_{i+1}=N_i{\ast}R_i,\;F_{i+1}=F_i{\ast}R_i$, i$\in${0,1,...n-1}'. The bits to the right of p fractional bits in intermediate multiplication results are truncated, and this truncation error is less than ‘$e_r=2^{-p}$'. The value of p is 29 for the single precision floating point, and 59 for the double precision floating point. Let ’$F_i=1+e_i$', there is $F_{i+1}=1-e_{i+1},\;e_{i+1}',\;where\;e_{i+1}, If '$[F_i-1]<2^{\frac{-p+3}{2}}$ is true, ’$e_{i+1}<16e_r$' is less than the smallest number which is representable by floating point number. So, ‘$N_{i+1}$ is approximate to ‘$\frac{N}{F}$'. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation is derived from many reciprocal tables ($T=\frac{1}{F}+e_t$) with varying sizes. 1'he superiority of this algorithm is proved by comparing this average number with the fixed number of multiplications of the conventional algorithm. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a divider. Also, it can be used to construct optimized approximate reciprocal tables. The results of this paper can be applied to many areas that utilize floating point numbers, such as digital signal processing, computer graphics, multimedia, scientific computing, etc

키워드

참고문헌

  1. S. F. Oberman and M. J. Flynn, 'Design Issues in Division and Other Floating Point Operations,' IEEE Transactions on Computer, vol. C-46, pp. 154-161, 199
  2. C. V. Freiman, 'Statistical Analysis of Certain Binary Division Algorithm,' IRE Proc., vol. 49, pp. 91-103, 1961
  3. S. F. McQuillan, J. V. McCanny, and R. Hamill, 'New Algorithms and VLSI Architectures for SRT Division and Square Root,' Proc. 11th IEEE Symp. Computer Arithmetic, IEEE, pp. 80-86, 1993
  4. D. L. Harris, S. F. Oberman, and M. A. Horowitz, 'SRT Division Architectures and Implementations,' Proc. 13th IEEE Symp. Computer Arithmetic, Jul. 1997
  5. M. Flynn, 'On Division by Functional Iteration,' IEEE Transactions on Computers vol. C-19, no. 8, pp. 702-706, Aug. 1970 https://doi.org/10.1109/T-C.1970.223019
  6. R. Goldschmidt, Application of division by convergence, master's thesis, MIT, Jun. 1964
  7. M. D. Ercegovac, et al, 'Improving Goldschmidt Division, Square Root, and Square Root Reciprocal,' IEEE Transactions on Computer, vol. 49, No.7, pp.759-763, Jul. 2000 https://doi.org/10.1109/12.863046
  8. D. L. Fowler and J. E. Smith, 'An Accurate, High Speed Implementation of Division by Reciprocal Approximation,' Proc. 9th IEEE symp. Computer Arithmetic, IEEE, pp. 60-67, Sep. 1989
  9. S. Oberman, 'Floating Point Division and Square Root Algorithms and Implementation in the AMD-K7 Microproce ssors, ' Proc. 14th IEEE Symp. Computer Arithmetic, pp. 106-115, Apr. 1999
  10. IEEE, IEEE Standard for Binary Floating-Po int Arithmetic, ANSI/IEEE Standard, Std. 754-1985
  11. D. DasSarma and D. Matula, 'Measuring and Accuracy of ROM Reciprocal Tables,' IEEE Transactions on Computer, vol.43, No.8, pp. 932-930, Aug. 1994 https://doi.org/10.1109/12.295855