A Study on the Performance Enhancement of Face Detection using SVM

SVM을 이용한 얼굴 검출 성능 향상에 대한 연구

  • 이지근 (원광대학교 컴퓨터공학과) ;
  • 정성태 (원광대학교 전기전자 및 정보공학부)
  • Published : 2005.04.01

Abstract

This paper proposes a method which improves the performance of face detection by using SVM(Support Vector Machine). first, it finds face region candidates by using AdaBoost based object detection method which selects a small number of critical features from a larger set. Next it classifies if the candidate is a face or non-face by using SVM(Support Vector Machine). Experimental results shows that the proposed method improve accuracy of face detection in comparison with existing method.

본 논문에서는 SVM(Support Vector Machine)을 이용하여 얼굴 검출 성능을 향상시키는 방법을 제안한다. 본 논문에서는 먼저 영상내의 거대한 특징 집합으로부터 중요한 작은 특징 집합을 선택하는 AdaBoost 기반 객체 검출 방법을 사용하여 얼굴 후보 영역을 검출한다. 그 다음에는 특징 벡터에 대해 SVM 기반 이진분류를 수행하여 후보 영역의 영상이 얼굴인지 아닌지를 판별한다 실험 결과 본문에서 제안한 방법은 기존의 방법에 비하여 얼굴 검출의 정확도를 향상시켰다.

Keywords

References

  1. Ming-Hsuan Yang, Kriegman, D.J, Ahuja N., 'Detecting face in images : a survey', Pattern Analysis and Machine Intelligence, IEEE Transactions on, volume: 24 Issue:1, pp.34-58, 2002 https://doi.org/10.1109/34.982883
  2. G.Yang, T.S. Huang, 'Human Face Detectionin a Complex Background', Pattern Recognition, vol. 27, No1, pp.53-63, 1994 https://doi.org/10.1016/0031-3203(94)90017-5
  3. Haiyuan WU, Qian CHEN, 'Detecting Human Face in Color Images', Porc of IEEE, pp.2232-2236, 1996
  4. R.Brunelli, T.Poggio, 'Face Recognition: Features versus Templates', IEEE Trans. PAMI., vol.15 pp.1042-1052, 1993 https://doi.org/10.1109/34.254061
  5. Viola, P, Jones, M, 'Rapid object detection using a boosted cascade of simple features', Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on , volume: 1 , 8-14, pp.1-511 - 1-518 vol.1, Dec. 2001
  6. Lienhart, R, Maydt, J, 'An extended set of Harr-like features for rapid object detection', Image Processing. 2002. Proceedings. 2002 International Conference on , volume: 1 , 22-25, pp.1-900 1- 903 vol.1, Sept. 2002
  7. Rainer Lienhart, Alexander Kuranov, Vadim Pisarevsky, 'Empirical Analysis of Detection Cascades of Boosted Classifie rs for Rapid Object Detection',DAGM'03 25th Pattern Recognition Symposium, Madgeburg, Germany, pp.297-304, Sep. 2003
  8. V. Vapnik, 'The Nature of Statistical Learning Theory', Springer-verlag, New York, 1995
  9. CJC. Burges, 'A Tutorial on Support Vector Machines for Pattern Recognition' in Data Mining and Knowledge Discovery, v.2 n.2,pp.121-167, 1998 https://doi.org/10.1023/A:1009715923555
  10. E. Osuna, R. Freund, F. Ciresi, 'Training Support Vector Machines:An application to face detection', Proceedin IEEE. CVPR, pp.130-136, 1997
  11. Platt, J.C, 'Sequential Minimal Optimiza tion: A Fast Algorithm for Training Support Vector Machines', Microsoft Research Technical Report MSR-TR-98 -14, 1998
  12. Center for Biological and Computational Learning at MIT and MIT, 'CBCl DATASETS' http://cbcl.mit.edu/'cbcl/ software-datasets, 2004