불균질 대수층에서 유선 시뮬레이션을 이용한 다수 오염원의 용질 이동 모사

Solute Transport Modeling using Streamline Simulation in a Heterogeneous Aquifer with Multiple Contaminant Sources

  • 정승필 (서울대학교 지구환경시스템공학부) ;
  • 최종근 (서울대학교 지구환경시스템공학부)
  • Jung Seung-Pil (School of Civil, Urban & Geosystem Eng., Seoul National University) ;
  • Choe Jong-Geun (School of Civil, Urban & Geosystem Eng., Seoul National University)
  • 발행 : 2005.06.01

초록

2차원 불균질 대수층에서 다수의 오염원이 있음 경우 오염물의 거동을 모사할 수 있는 방법을 제시하였다. 이 방법은 유선 시뮬레이션을 기반으로 하며 다차원의 계산을 다수의 일차원으로 분해하여 계산하는 방법으로서 불균질한 매질에서 수두 계산을 한 후, 관심영역에 유선을 분포시키고 그 유선을 띠라 오염물이 전파되는 농도를 계산한다. 개발된 모델을 Visual MODFLOW를 이용하여 검증하였고 시간에 따른 농도 분포나 관측정에서의 용질 도달 곡선이 잘 일치함을 확인할 수 있었다. 개발된 모델은 시뮬레이션 수행 시간에 대한 효율 면에서 Visual MODFLOW보다 뛰어나 많은 연산을 필요로 하는 대규모 대수층의 용질거동 예측이나 반복 계산을 필요로 하는 역산 모델링에서 효과적으로 사용될 수 있다.

This study presents a contaminant transport model suitable for a 2-dimensional heterogeneous aquifer with multiple contaminant sources. It uses a streamline simulation, which transforms a multi-dimensional problem into multiple 1dimensional problems. It runs flow simulation, streamline tracking, and calculation of contaminant concentrations by turns. The model is verificated with a Visual MODFLOW by comparing contaminant concentration distributions and breakthrough curves at an observation well. Due to its fast simulation, it can be applied to time consuming simulations such as in a fine-grided aquifer, an inverse modeling and other applications.

키워드

참고문헌

  1. Anderson, M.P., 1979, Using models to simulatie the movement of contaminants through groundwater flow systems, Criti. Rev. Environ. Control, 9(2), 97-156 https://doi.org/10.1080/10643387909381669
  2. Batychy, R.P., Blunt, M.J., and Thiele, M.R., 1997, A 3D field scale streamline-based simulator, SPE Reservoir Eng., 12, 246-254 https://doi.org/10.2118/36726-PA
  3. Bear, J., Tsang, C.F., and de Marsily, G., 1993, Flow and Contaminant Transport in Fractured Rock, Academic Press
  4. Crane, M.J. and Blunt, M.J., 1999, Streamline-based simulation of solute transport, Water Resour. Res., 35(10), 3061-3077 https://doi.org/10.1029/1999WR900145
  5. Datta-Gupta, A. and King, M.J., 1995, A semianalytic approach to tracer flow modeling in heterogeneous permeable media, Adv. Water Resour., 18, 9-24 https://doi.org/10.1016/0309-1708(94)00021-V
  6. Jang, M. and Choe, J., 2002, Stochastic optimization for global minimization and geostatistical calibration, J. of Hydrology, 266, 46-52
  7. Jang, M. and Choe, J., 2004, An inverse system for incorporation of conditioning to pressure and streamline-based calibration, J. of Contaminant Hydrology, 69, 139-156 https://doi.org/10.1016/S0169-7722(03)00154-2
  8. Jang, M., Lee, J., Choe, J., and Kang, J.M., 2001, Modeling of solute transport in a single fracture using streamline simulation and experimental validation, Journal of Hydrology, 261, 74-85 https://doi.org/10.1016/S0022-1694(02)00015-X
  9. Keller, A.A., Roberts, P.V., and Blunt, M.J., 1999, Effects of fracture aperture variations on the dispersion of contaminants, Water Resour. Res., 35(1), 55-63 https://doi.org/10.1029/1998WR900041
  10. Kitanidis, P.K., 1994, Particle-tracking equations for the solution of the advection-dispersion equation with variable coefficients, Water Resour. Res., 30(11), 3225-3227 https://doi.org/10.1029/94WR01880
  11. Kulkarni, K.N. and Datta-Gupta, A., 2000, Estimating relative permeability from production data: a streamline approach, SPE Journal, 5(4), 402-411 https://doi.org/10.2118/66907-PA
  12. Neuman, S.P., 1984, Adaptive Eulerian-Lagrangian finite element method for advection-dispersion, Int. J. Num. Meth. Eng., 20, 321-337 https://doi.org/10.1002/nme.1620200211
  13. Thiele, M.R., Batychy, R.P., Blunt, M.J., and Orr Jr., F.M., 1996, Simulating flow in heterogeneous media using streamtubes and streamlines, SPE Reservoir Eng., 10, 5-12
  14. Wang, Y. and Kovscek, A.R., 2000, Streamline approach for history matching production data, SPE Journal, 5(4), 353-362 https://doi.org/10.2118/58350-PA