Solute Transport Modeling using Streamline Simulation in a Heterogeneous Aquifer with Multiple Contaminant Sources

불균질 대수층에서 유선 시뮬레이션을 이용한 다수 오염원의 용질 이동 모사

  • Jung Seung-Pil (School of Civil, Urban & Geosystem Eng., Seoul National University) ;
  • Choe Jong-Geun (School of Civil, Urban & Geosystem Eng., Seoul National University)
  • 정승필 (서울대학교 지구환경시스템공학부) ;
  • 최종근 (서울대학교 지구환경시스템공학부)
  • Published : 2005.06.01

Abstract

This study presents a contaminant transport model suitable for a 2-dimensional heterogeneous aquifer with multiple contaminant sources. It uses a streamline simulation, which transforms a multi-dimensional problem into multiple 1dimensional problems. It runs flow simulation, streamline tracking, and calculation of contaminant concentrations by turns. The model is verificated with a Visual MODFLOW by comparing contaminant concentration distributions and breakthrough curves at an observation well. Due to its fast simulation, it can be applied to time consuming simulations such as in a fine-grided aquifer, an inverse modeling and other applications.

2차원 불균질 대수층에서 다수의 오염원이 있음 경우 오염물의 거동을 모사할 수 있는 방법을 제시하였다. 이 방법은 유선 시뮬레이션을 기반으로 하며 다차원의 계산을 다수의 일차원으로 분해하여 계산하는 방법으로서 불균질한 매질에서 수두 계산을 한 후, 관심영역에 유선을 분포시키고 그 유선을 띠라 오염물이 전파되는 농도를 계산한다. 개발된 모델을 Visual MODFLOW를 이용하여 검증하였고 시간에 따른 농도 분포나 관측정에서의 용질 도달 곡선이 잘 일치함을 확인할 수 있었다. 개발된 모델은 시뮬레이션 수행 시간에 대한 효율 면에서 Visual MODFLOW보다 뛰어나 많은 연산을 필요로 하는 대규모 대수층의 용질거동 예측이나 반복 계산을 필요로 하는 역산 모델링에서 효과적으로 사용될 수 있다.

Keywords

References

  1. Anderson, M.P., 1979, Using models to simulatie the movement of contaminants through groundwater flow systems, Criti. Rev. Environ. Control, 9(2), 97-156 https://doi.org/10.1080/10643387909381669
  2. Batychy, R.P., Blunt, M.J., and Thiele, M.R., 1997, A 3D field scale streamline-based simulator, SPE Reservoir Eng., 12, 246-254 https://doi.org/10.2118/36726-PA
  3. Bear, J., Tsang, C.F., and de Marsily, G., 1993, Flow and Contaminant Transport in Fractured Rock, Academic Press
  4. Crane, M.J. and Blunt, M.J., 1999, Streamline-based simulation of solute transport, Water Resour. Res., 35(10), 3061-3077 https://doi.org/10.1029/1999WR900145
  5. Datta-Gupta, A. and King, M.J., 1995, A semianalytic approach to tracer flow modeling in heterogeneous permeable media, Adv. Water Resour., 18, 9-24 https://doi.org/10.1016/0309-1708(94)00021-V
  6. Jang, M. and Choe, J., 2002, Stochastic optimization for global minimization and geostatistical calibration, J. of Hydrology, 266, 46-52
  7. Jang, M. and Choe, J., 2004, An inverse system for incorporation of conditioning to pressure and streamline-based calibration, J. of Contaminant Hydrology, 69, 139-156 https://doi.org/10.1016/S0169-7722(03)00154-2
  8. Jang, M., Lee, J., Choe, J., and Kang, J.M., 2001, Modeling of solute transport in a single fracture using streamline simulation and experimental validation, Journal of Hydrology, 261, 74-85 https://doi.org/10.1016/S0022-1694(02)00015-X
  9. Keller, A.A., Roberts, P.V., and Blunt, M.J., 1999, Effects of fracture aperture variations on the dispersion of contaminants, Water Resour. Res., 35(1), 55-63 https://doi.org/10.1029/1998WR900041
  10. Kitanidis, P.K., 1994, Particle-tracking equations for the solution of the advection-dispersion equation with variable coefficients, Water Resour. Res., 30(11), 3225-3227 https://doi.org/10.1029/94WR01880
  11. Kulkarni, K.N. and Datta-Gupta, A., 2000, Estimating relative permeability from production data: a streamline approach, SPE Journal, 5(4), 402-411 https://doi.org/10.2118/66907-PA
  12. Neuman, S.P., 1984, Adaptive Eulerian-Lagrangian finite element method for advection-dispersion, Int. J. Num. Meth. Eng., 20, 321-337 https://doi.org/10.1002/nme.1620200211
  13. Thiele, M.R., Batychy, R.P., Blunt, M.J., and Orr Jr., F.M., 1996, Simulating flow in heterogeneous media using streamtubes and streamlines, SPE Reservoir Eng., 10, 5-12
  14. Wang, Y. and Kovscek, A.R., 2000, Streamline approach for history matching production data, SPE Journal, 5(4), 353-362 https://doi.org/10.2118/58350-PA