Oxidative Coupling Reaction of Chlorophenols by Natural Manganese Dioxides

천연망간산화물을 이용한 클로로페놀류의 산화중합반응

  • Jeon Sun-Young (Department of Civil Engineering, Environmental Research Center, Kyunghee University) ;
  • Ko Seok-Oh (Department of Civil Engineering, Environmental Research Center, Kyunghee University)
  • 전선영 (경희대학교 토목건축대학, 환경연구센터) ;
  • 고석오 (경희대학교 토목건축대학, 환경연구센터)
  • Published : 2005.08.01

Abstract

Removal of 4-chlorophenol (4CP) by natural manganese dioxide (NMD) catalyzed reaction was investigated in this study. Tests were also carried out to evaluate the effects of pH and natural organic matter (NOM) on the degradative oxidation of 4CP. Experimental results proved that NMD was effective for the removal of 4CP. Extensive kinetic analysis suggests that overall oxidation of 4CP by NMD is second-order reaction, the first-order with respect to 4CP, and the first-order with respect to NMD, respectively. Also, 4CP oxidation rates on the Mn-oxide surfaces were highly dependent upon experimental conditions such as pH, initial concentration of 4CP or NMD, and existence of humic acid. As pH increased above PZC of NMD, the reaction rate of 4CP was decreased, due to the low affinity of 4CP on NMD at high pH. At pH lower than PZC of NMD, reaction rate of 4CP was also decreased. It was considered that humic acid was involved in the oxidative coupling reaction of 4CP by NMD, resulting in the enhanced degradation rate of 4CP. This study proved that natural manganese oxide can be effectively applied for the removal of chlorophenols in aqueous phase.

본 연구에서는 천연 망간산화물에 의한 4-클로로페놀 화합물의 제거효과를 평가하였으며 자연유기물질과 용액의 pH에 의한 분해율 변화를 살펴보았다. 천연망간산화물은 4-클로로페놀 화합물의 제거에 효과적이었으며 실험결과의 분석을 통하여 반응계수 및 차수에 대한 정량적인 값을 도출하였다. 그 결과, 전체적인 반응은 2차반응으로서 4-클로로페놀 화합물에 대하여 1차, 망간산화물에 대하여 1차에 비례하는 반응이었다. 망간산화물에 의한 4-클로로페놀 화합물의 산화반응은 표면에서 일어나며 pH에 큰 영향을 받았다. 용액의 pH가 망간산화물의 영가전위(PZC) 값보다 클 경우 반응율은 급격히 감소하였으며 PZC 보다 pH가 작은 경우에도 반응율은 감소하였다. 휴믹산을 첨가한 경우 4-클로로페놀 화합물의 산회중합 반응은 다소 증가하는 경향을 보여 휴믹산이 중합반응에 관여하고 있다고 평가할 수 있다. 본 연구 결과, 경제적인 비용으로서 천연망간산화물을 이용하여 페놀계 오염물의 제거에 효과적으로 사용 할 수 있는 방안을 제시하였다.

Keywords

References

  1. 전선영, 2005, 독성 유기물로 오염된 퇴적토의 현장처리를 위한 Reactive Capping 재료의 반응성 평가, 경희대학교 석사학위논문
  2. Al-Degs, Y., Khraisheh, M.A.M. and Tutunji, M.F., 2001, Sorption of lead ions on diatomite and manganese oxides modified diatomite, Water Res., 35(15), 3724-3728 https://doi.org/10.1016/S0043-1354(01)00071-9
  3. Bollag, J.M., 1992, Decontaminating soil with enzymes. An in situ method using phenolic and anilinic compounds, Environ. Sci. Technol., 26, 1876-1881 https://doi.org/10.1021/es00034a002
  4. Da Silva, J.P., Vieira Ferreira, L.F., Da Silva, A.M., and Oliveira, A.S., 2003, Photochemistry of 4-Chlorophenol on Cellulose and Silica, Environ. Sci. Technol., 37, 4798-4803 https://doi.org/10.1021/es026448c
  5. Dec, J., and Bollag, J.M., 1990, Detoxification of substituted phenols by oxidoreductive enzymes through polymerization reactions, Arch. Environ. Contam. Toxicol., 19, 543-550 https://doi.org/10.1007/BF01059073
  6. D'Oliveira, J.C., AI-Sayyed, G and Pichat, P., 1990, Photodegradation of 2- and 3-chlorophenol in TiO2 aqueous suspensions, Environ. Sci. Technol., 24(7), 990-996 https://doi.org/10.1021/es00077a007
  7. Fossey, J., Lefort, D., and Sorba, J., 1995, Free Radicals in Organic Chemistry, John Wiley & Sons, New York
  8. Healy, T.W, Herring, A.P., and Fuerstenau, D.W, 1966, The effect of crystal structure on the suface properties of a series of manganese dioxides, J. Colloid Interf Sci., 21, 435-444 https://doi.org/10.1016/0095-8522(66)90008-0
  9. Mckenzie, R.M., 1981, The surface charge on manganese dioxides, Aust. J. Soil. Res., 19, 41-50 https://doi.org/10.1071/SR9810041
  10. Merkle, P.B., Knocke, W.R., and Gallagher, D.L., 1997, Method for coating filter media with synthetic manganese oxide, J. Environ. Eng-ASCE., 123(7),642-649 https://doi.org/10.1061/(ASCE)0733-9372(1997)123:7(642)
  11. Musso H., 1967, In Oxidative Coupling of Phenols; Taylor W.L., Battersby A.R., Ed; Dekker: New York
  12. Murray, J.W, 1974, The surface chemistry of hydrous manganese dioxide, J. Colloid Interf. Sci., 46, 357-371 https://doi.org/10.1016/0021-9797(74)90045-9
  13. Nico, P.S. and Zasoski, R.J., 2000, Importance of Mn(III) availability on the rate of Cr(III) oxidation on delta-$MnO_2$, Environ. Sci. Technol., 34(16), 3363-3367 https://doi.org/10.1021/es991462j
  14. Park, J.W, Dec, J., Kim, J.E., and Bollag, J.M., 1999, Effect of humic constituents on the transformation of chlorinated phenols and anilines in the presence of oxidoreductive enzymes or birnessite, Environ. Sci. Technol., 33(12), 2028-2034 https://doi.org/10.1021/es9810787
  15. Petrie, R.A, Grossl, P.R. and Sims, R.C., 2002, Oxidation of pentachlorophenol in manganese oxide suspensions under controlled eh and pH environments, Environ. Sci. Technol., 36(17), 3744-3748 https://doi.org/10.1021/es0109491
  16. Sagara, F., Ning, W.B., Yoshida, I. and Ueno, K., 1989, Preparation and adsorption properties of l-$MnO_2$-cellulose hybrid-type-ion-exchanger for lithium ion Application to the enrichment of lithium ion from seawater, Separ. Sci. Tehnol., 24, 1227-1243 https://doi.org/10.1080/01496398908049899
  17. Scott, M.J. Ph. D. Thesis, 1991, California Institute of Technology, Pasadena
  18. Semushin, A.M., 1984, Modification of active carbons with manganese dioxide, J. Appl. Chem. 57, 2411-2412
  19. Stevenson, F.J., 1994, Humus chemistry: genesis, composition, reactions, John Wiley & Sons, New York, p. 453-471
  20. Stone, A.T. and Morgan, J.J., 1984a, Reduction and dissolution of manganese (III) and manganese (IV) oxides by organics. 1. Reaction with hydroquinone, Environ. Sci. Technol., 18(6), 450-456 https://doi.org/10.1021/es00124a011
  21. Stone, A.T. and Morgan, J.J., 1984b, Reduction and dissolution of manganese(III) and manganese(IV) oxides by organics. 2. Survey of the reactivity of organics, Environ. Sci. Technol., 18(8), 617-624 https://doi.org/10.1021/es00126a010
  22. Stone, A.T., 1987, Reductive dissolution of manganese (III/IV) oxides by substituted phenols, Environ. Sci. Technol., 21(10), 979-988 https://doi.org/10.1021/es50001a011
  23. Stone, A.T. and Ulrich, H,J., 1989, Oxidation of chlorophenols adsorbed to manganese oxide surfaces, Environ. Sci. Technol., 23(4), 421-428 https://doi.org/10.1021/es00181a006
  24. Tipping, E., Thompson, D.W and Davison, W., 1984, Oxidation products of Mn (II) in lake waters, Chem. Geol., 44(4), 359-383 https://doi.org/10.1016/0009-2541(84)90149-9
  25. Weber, Jr.W,J. and Huang, Q., 2003, Inclusion of persistent organic pollutants in humification processes: direct chemical incorporation of phenanthrene via oxidative coupling, Environ. Sci. Technol., 37(18), 4221-4227 https://doi.org/10.1021/es030330u
  26. Zanta, C.L.P.S., Michaud, P.A, Comninellis, C., Andrade, A.R.D. and Boodts, J.F.C., 2003, Electrochemical oxidation of p-chlorophenol on $SnO_2-Sb_2O_5$ based anodes for wastewater treatment, J. Appl. Electrochem. 33(12), 1211-1215 https://doi.org/10.1023/B:JACH.0000003863.13587.b7