Effects of Soil Temperature on Biodegradation Rate of Diesel Compounds from a Field Pilot Test Using Hot Air Injection Process

고온공기주입 공법 적용시 지중온도가 생분해속도에 미치는 영향

  • Park Gi-Ho (Daewoo Institute of Construction Technology) ;
  • Shin Hang-Sik (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park Min-Ho (Daewoo Institute of Construction Technology) ;
  • Hong Seung-Mo (Daewoo Institute of Construction Technology) ;
  • Ko Seok-Oh (Department of Civil and Environmental Engineering, Kyunghee University)
  • 박기호 ((주)대우건설 기술연구소) ;
  • 신항식 (한국과학기술원 건설및환경공학과) ;
  • 박민호 ((주)대우건설 기술연구소) ;
  • 홍승모 ((주)대우건설 기술연구소) ;
  • 고석오 (경희대학교 토목건축공학부)
  • Published : 2005.08.01

Abstract

The objective of this study is to evaluate the effects of changes in soil temperature on biodegradation rate of diesel compounds from a field pilot test using hot air injection process. Total remediation time was estimated from in-situ biodegradation rate and temperature for optimum biodegradation. All tests were conducted by measuring in-situ respiration rates every about 10 days on highly contaminated area where an accidental diesel release occurred. The applied remediation methods were hot air injection/extraction process to volatilize and extract diesel compounds followed by a bioremediation process to degrade residual diesels in soils. Oxygen consumption rate varied from 2.2 to 46.3%/day in the range of 26 to $60^{\circ}C$, and maximum $O_2$ consumption rate was observed at $32.0^{\circ}C$. Zero-order biodegradation rate estimated on the basis of oxygen consumption rates varied from 6.5 to 21.3 mg/kg-day, and the maximum biodegradation rate was observed at $32^{\circ}C$ as well. In other temperature range, the values were in the decreasing trend. The first-order kinetic constants (k) estimated from in-situ respiration rates measured periodically were 0.0027, 0.0013, and $0.0006d^{-1}$ at 32.8, 41.1, and $52.7^{\circ}C$, respectively. The estimated remediation time was from 2 to 9 years, provided that final TPH concentration in soils was set to 870 mg/kg.

본 연구의 목적은 실제 디젤유로 오염된 불포화 토양을 복원하기 위해 수행되었던 고온공기 주입 파일롯 테스트에서 토양온도 변화가 생분해 속도에 미치는 영향을 알아보고자 히는 것이었고, 이것을 토대로 현장 생분해 속도, 최적의 생분해 온도 및 1차 분해 속도 상수를 도출하고 총복원기간을 예측해 보았다. 실험은 과거 디젤유 누출 사고가 있었던 고농도 오염지역에 대해 토양의 온도별 현장 호흡률(in-situ respiration)을 약 10일 간격으로 측정하는 식으로 진행되었다. 적용된 복원공법은 고온공기를 주입/추출하여 1차적으로 오염된 디젤 성분을 휘발, 추출하고 이어서 토양의 잔열과 미생물 생분해를 이용하여 토양내 잔류 디젤을 제거하는 후속공정으로 이루어졌다. 토양온도 $26\sim60^{\circ}C$ 범위에서 산소소비속도는 $2.2\sim46.3%/day$ 값을 보였고 $32^{\circ}C$에서 가장 빠른 46.3%/day를 나타냈다. 산소소비속도를 기준으로 하여 계산한 0차반응 생분해 속도(biodegradation rate)는 $6.5\sim21.3mg/kg-day$ 이었고 역시 토양온도 $ 32^{\circ}C$ 에서 최대값을 보였고 그 이전과 이후는 각각 감소된 값을 나타냈다. 주기적으로 측정된 현장호흡률을 바탕으로 계산한 1차 분해속도 k는 몇가지 온도 범위에서 즉, $0.0027\;d^{-1}(@32.8^{\circ}C),\;0.0013\;d^{-1}(@41.1^{\circ}C)$ 그리고 $0.0006\;d^{-1}(@52.7^{\circ}C)$ 이었다. 토양의 초기 TPH 농도 대비목표 농도를 870 mg/kg으로 가정했을 경우 소요 복원기간은 $2\mu9$년 정도 소요되는 것으로 예측되었다.

Keywords

References

  1. 염익태, 이상현, 안규홍, 1999, 오염토양 중 디젤성분의 생분해 처리성 평가, 대한환경공학회지, 21(8), 1519-1527
  2. Brock, T.D., 1970, Biology of Microorganisms, Prentice Hall, Englewood Cliffs, New Jersey
  3. Dupont, R.R. and Lakshmiprasad, T., 1999, Operating mode impacts on bioventing system performance, In: B.C. Alleman, A. Leeson (ed.), In Situ Bioremediation of Petroleum Hydrocarbon and Other Organic Compounds, Bioremediation, 5(3), Battelle Press, Columbus, p. 183-188
  4. ENSR., 1995, Soil Vapor Extraction and Bioventing. Engineer Manual, EM 1110.1.4001., US Army Corps of Engineers, Washington, DC
  5. Malina, G., Grotenhuis J.T.C., and Rulkens, WH., 1999, The effect of temperature on the bioventing of soil contaminated with toluene and decane and solid phase microextraction-gas chromatography, J. Soil. Contam., 8(4), 455-480 https://doi.org/10.1080/10588339991339414
  6. Malina, G., Grotenhuis, J.T.C., and Rulkens, WH., 2002, Vapor extractionlbioventing sequential treatment of soil contaminated with volatile and semivolatile hydrocarbon mixtures, Bioremediation Journal, 6(2), 159-176 https://doi.org/10.1080/10588330208951211
  7. Laleh Yerushalmi and Sylvie Rocheleau, 2003, Enhanced biodegradation of petroleum hydrocarbons in contaminated soil, Bioremediation Journal, 7(1), 37-51 https://doi.org/10.1080/713914241
  8. Leeson, A. and Hinchee, R.E., 1997, Soil Bioventing Principle and Practice. CRC Lewis, Boca Raton
  9. Miller, R.N., Vogel, C.C., and Hinchee, R.E., 1993, A field scale investigation of petroleum hydrocarbon biodegradation in the vadose zone enhanced by soil venting at Tyndall AFB, Florida. In: R.E. Hinchee, R.E Olfenbuttel (ed.), In Situ Bioreclamation: Applications and Investigations for Hydrocarbon and Contaminated Site Remediation, Butterworth-Heineman. p. 283-302
  10. Nocentini, M., Pinelli, D., and Fava, E, 2000, Bioremediation of a soil contaminated byhydrocarbon mixture: the residual concentration problem, Chemosphere, 41, 1115-1123 https://doi.org/10.1016/S0045-6535(00)00057-6
  11. Yeung, P.Y, Johnson, R.L., and Xu, J.G., 1997, Biodegradation of petroleum hydrocarbons in soil as affected by heating and forced aeration, J. Environ. Qual., 26, 1511-1516 https://doi.org/10.2134/jeq1997.00472425002600060009x
  12. Taylor, C., and Viraraghavan, T., 1999, A bench-scale investigation of land treatment of soil contaminated with diesel fuel, Chemosphere, 39(10), 1583-1593 https://doi.org/10.1016/S0045-6535(99)00056-9
  13. U.S. EPA, 1995, Bioventing Principles and Practice : Bioventing Design, EPA/540/R-95/534a, Washington, DC
  14. U.S. EPA, 1995, Bioventing Principles and Practice I: Bioventing Principles, EPA/540/R-95/534a, Washington, DC
  15. Underhill, SA., Forbes, P., and Muller, J., 1997, Bioremediation of petroleum contaminated soils at loring AFB, Marine, In Situ and On-Site Bioremediation; Volume 1, Allenman, B. C. and Leeson, A.(ed.), 4th International In Situ and On-Site Bioremediation Symposium, Battelle Press, p. 361-366
  16. William, W. M. and Stewart, G. R, 2000, Limiting factors for hydrocarbon biodegradation at low temperature in arctic soils, Soil. Biol. Biochem., 32, 1161-1172 https://doi.org/10.1016/S0038-0717(00)00032-8
  17. www.osc.edulresearch/pcrm/emissions/petrol