다층 퍼셉트론의 층별 학습 가속을 위한 중간층 오차 함수

A New Hidden Error Function for Training of Multilayer Perceptrons

  • 오상훈 (목원대학교 정보통신공학부)
  • 발행 : 2005.12.01

초록

다층 퍼셉트론의 학습을 빠르게 하기 위한 방법으로 층별 학습이 제안되었었다. 이 방법에서는 각 층별로 오차함수가 주어지고, 이렇게 층별로 주어진 오차함수를 최적화 방법을 사용하여 감소시키도록 학습이 이루어진다. 이 경우 중간층 오차함수가 학습의 성능에 큰 영향을 미치는 데, 이 논문에서는 층별 학습의 성능을 개선하기 위한 중간층 오차함수를 제안한다. 이 중간층 오차함수는 출력층 오차함수에서 중간층 가중치의 학습에 관계된 성분을 유도하는 형태로 제안된다. 제안한 방법은 필기체 숫자 인식과 고립단어인식 문제의 시뮬레이션으로 효용성을 확인하였다.

LBL(Layer-By-Layer) algorithms have been proposed to accelerate the training speed of MLPs(Multilayer Perceptrons). In this LBL algorithms, each layer needs a error function for optimization. Especially, error function for hidden layer has a great effect to achieve good performance. In this sense, this paper proposes a new hidden layer error function for improving the performance of LBL algorithm for MLPs. The hidden layer error function is derived from the mean squared error of output layer. Effectiveness of the proposed error function was demonstrated for a handwritten digit recognition and an isolated-word recognition tasks and very fast learning convergence was obtained.

키워드