Effects of Fish and Bacterium on the Morphological and Growth of Cyanobacterium Microcystis aeruginosa

박테리아와 어류가 유해조류 Microcystis aeruginosa의 성장 및 형태변화에 미치는 영향

  • Kim, Bo-Ra (Department of Life Science, Hanyang University) ;
  • Han, Myung-Soo (Department of Life Science, Hanyang University) ;
  • Kim, Baik-Ho (Department of Life Science, Hanyang University)
  • 김보라 (한양대학교 자연과학대학 생명과학과) ;
  • 한명수 (한양대학교 자연과학대학 생명과학과) ;
  • 김백호 (한양대학교 자연과학대학 생명과학과)
  • Published : 2005.09.30

Abstract

Effects of three biological control agents such as Xanthobacter autotrophycus, Tanichthys albonubes and Oryzias latipes on the morphology and growth of cyanobacterium Microcystis aeruginosa were studied. The experiments were consisted of six treatments of living organism (LO) and culture filtered water of three organisms (CFW). Three LOs effectively decreased the density of M. aeruginosa, and then cyanobacteria hardy showed in the microscopic field after 5 days of cultivation. All LO and CFW agents induced the colonial formation of cyanobacterium M. aeruginosa, although there were little differences in colony formation according to the kinds, density and type of treatment. In particular, the higher density treatment of fish CFW induced effectively the colony formation of cyanobacteria, compared to the bacterial LO and CFW. Thus, the application of bio agents to control the cyanobacterial bloom is needed to the further study to diminish the adverse effects such as the enhancement of colony formation towards on the new bloom against the aquatic ecosystem.

유해조류의 대발생을 제어하기 위하여 개발되었던 박테리아, 백운몰개, 송사리 등의 직접 및 배양여액이 배양중인 단독형 (solitary) 남조 M. aeruginosa의 성장 및 형태에 어떠한 영향을 주는지 파악하기 위하여 대수기 조류세포에 생물제재를 농도별로 처리하였다. 실험에 사용된 3가지 생물제재의 적접처리시 남조 M. aeruginosa를 효과적으로 감소시켰으며, 특히 2종의 어류는 모두 처리 5일째 조류세포를 완전히 제어하였다. 생물제재의 직접 또는 여액에 의한 조류세포의 군체형성은 생물제재의 종류, 처리유형, 처리농도 등에 따라 차이를 보였는데, 어류의 경우, 여액 처리농도가 높을수록 높은 군체 및 군체당 높은 세포수를 나타냈으나, 살조세균은 농도에 따른 유의한 차이를 보이지 않았다. 결국, 유해조류의 제어를 위한 생물제재의 현장 적용은 남조 M. aeruginosa의 군체형성을 유도함으로서 새로운 조류대발생의 원인이 될 수 있기 때문에 새로운 생물제재나 적용기법 등의 개발이 필요하다고 판단되었다.

Keywords

References

  1. 김백호, 정승원, 서종근, 서미연, 한명수. 2005a. 살조세균 적용 이 식물플랑크톤 군집과 조류독소 분포에 미치는 영향. 한국육수학회지 38: 395-404
  2. 김백호, 서미연, 한명수. 2005b. 용존성 독소 microcystin-LR 이 식물플랑크톤 군집에 미치는 영향. 한국육수학회지 38: 312-320
  3. 하경, 장민호, 정종문, 주기재. 2003. 동물플랑크톤 배양여과액 에 의한 Microcystis aeruginosa의 성장, 형태변화 및 microcystisn 생성량의 변화. 한국육수학회지 36: 1-8
  4. Branco, C.C.Z. and O. Necchi. 1998. Microhabit and morphometric variation of two Chaetophoracean (Chaetophorales, Chlorophyta) species in tropical streams of southeastern Brazil. Phycological Res. 46: 169-174 https://doi.org/10.1111/j.1440-1835.1998.tb00110.x
  5. Bronmark, C. and L.A. Hansson. 2000. Chemical communication in aquatic system: an introduction. Oikos. 88: 103-109 https://doi.org/10.1034/j.1600-0706.2000.880112.x
  6. Choi, H.J., B.H. Kim, J.D. Kim and M.S. Han. 2005. Streptomyces neyagawaensis as a control for the harzardous biomass of Microcystis aeruginosa (Cyanobacteria) in eutrophic freshwaters. Biological Control. 33: 335-343 https://doi.org/10.1016/j.biocontrol.2005.03.007
  7. Coen, L.D. and C.E. Tanner. 1989. Morphological variation and differential susceptibility to herbivory in the tropical brown alga Lobophora variegata. Mar. Ecol. Prog. Ser. 54: 287-298 https://doi.org/10.3354/meps054287
  8. De Mott, W.R. and F. Moxter. 1991. Foraging on Cyanobacteria by Copepoda: responses to chemical defences and resource abundance. Ecology. 72: 1820-1834 https://doi.org/10.2307/1940981
  9. Fukushima, M., N. Takamura, B.H. Kim, M. Nakagawa, L. Sun and Y. Zheng. 2001. The responses of an aquatic ecosystem to the manipulation of the filter-feeding silver carp (Hypophthalmichthys molitrix). Verh Int Verein Limnol. 27: 1033-1039
  10. Grossart, H.P., F. Levold, M. Allgaier, M. Simon and T. Brinkhoff. 2005. Marine diatom species harbour distinct bacterial communities Environmental Microbiology. 7: 860-873 https://doi.org/10.1111/j.1462-2920.2005.00759.x
  11. Ha, K., M.H. Jang and G.J. Joo. 2002. Spatial and temporal dynamics of phytoplankton communities along a regulated river system, the Nakdong River, Korea. Hydrobiologia. 470: 235-245 https://doi.org/10.1023/A:1015610900467
  12. Hamlaoui, S., A. Coute, G. Lacroix and F. Lescher-Moutoube. 1998. Nutrient and fish effects on the morphology of the dinogflagellates. C. R. Acad. Sci. Paris Sciences de la vie/Life Sciences. 321: 39-45
  13. Hessen, D.O. and E. Van Donk. 1993. Morphological changes in Scenedesmus induced by substances released from Daphnia. Arch Hydrobiol. 127: 129-140
  14. Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scan J Sta. 6: 65-70
  15. Horiguchi, T. and R.N. Pienaar. 1991. Ultrastructure of a marine dinoflagellate, Peridinium quinquecorne Abe (Peridinales) from South Africa with particular reference to its chrysophyte symbiont. Bot. Mar. 34: 123- 131 https://doi.org/10.1515/botm.1991.34.2.123
  16. Kang, Y.H., J.D. Kim., B.H. Kim., D.S. Kong and M.S. Han. 2005. Isolation and characterization of a bioagent antagonistic to diatom, Stephanodiscus hantzschii. J. Appl. Microbiol. 98: 1030-1038 https://doi.org/10.1111/j.1365-2672.2005.02533.x
  17. Kim, B.H., M.K. Choi and N. Takamura. 2003. Phytoplankton preferences of young silver carp, Hypophthalmichthys molitrix, in hypereutrophic mesocosms during a warm season. J. Freshwater Ecol. 18: 69-77 https://doi.org/10.1080/02705060.2003.9663952
  18. Kim, B.H., M.-S. Han and N. Takamura. 2003. Effects of fish introduction on the Length of tail of Cryptomonads in mesocosm experiments. Oecologia. 136: 73-79 https://doi.org/10.1007/s00442-003-1226-3
  19. Kimmel, B.L. and J.R. Holt. 1988. Nutrient availability and patters of polymorphism in the freshwater dinoflagellate, Ceratium hirundinella. Arch Hydrobiol. 4: 577- 592
  20. Lampert, W., K.O. Rothhaupt and Von Elert. 1994. Chemical induction of colony formation in a green alga (Scenedesmus acutus) by grazers (Daphnia). Limnol Oceanogr. 39: 1543-1550 https://doi.org/10.4319/lo.1994.39.7.1543
  21. Lee, S.W. and D.A. Cooksey. 2000. Gene expressed in Pseudomonas putida during colonization of a plantpathogenic fungus. Appl. Environ. Microbiol. 66: 2764- 2772 https://doi.org/10.1128/AEM.66.7.2764-2772.2000
  22. Lewis, S.M., J.N. Norris and R.B. Searles. 1987. The regulation of morphological plasticity in trophic reef algae by herbivory. Ecology. 68: 636-641 https://doi.org/10.2307/1938468
  23. Loose, C.J., E. Von Elert and P. Dawidowicz. 1993. Chemically-induced diel vertical migration in Daphnia: a new bioassay for kairomones exuded by fish. Arch Hydrobiol. 126: 329-337
  24. Lurling, M. 1998. Effect of grazing-aasociated infochemicals on growth and morphological development in Scendesmus acutus (Chlorophyceae). J. Phycol. 34: 576- 586
  25. Moustaka-Gouni, M. 1996. Some aspects on the morphology and ecology of Rhodomonas minuta var. nannoplanctica and R. lens (Cryptophyceae). Nord J Bot. 16: 335-343 https://doi.org/10.1111/j.1756-1051.1996.tb00243.x
  26. NIES (National Institute for Environmental Studies). 2000. Microalgae and Protozoa. In: Watanabe, M.M., Hiroki, M., Kasai, F., Kawachi, M., Shimizu, A., Erata, M., Mori, F., Yumoto, K. (Eds.), NIES-Collection: List of Strains, 6th ed. National Institute for Environmental Studies, Tsukuba, Japan, pp. 30-31
  27. Pech-Pacheco, J.L., J. Alvarez-Borrego, E. Orellana- Cepeda and R. Cortes-Altamirano. 1999. Diffraction pattern applicability in the identification of Ceratium species. J. Plankton Res. 21: 1455-1474 https://doi.org/10.1093/plankt/21.8.1455
  28. Sang, M., B.H. Kim and M.S. Han. 2004. Isolation and identification of an algicidal bacterium against Microcystis aeruginosa in freshwater. Korean Society of Limnology. Seoul University
  29. Santer, B. 1996. Nutritional sustability of the dinoflagellate Ceratium furcoides for four copepod species. J. Plankton Res. 18: 323-333 https://doi.org/10.1093/plankt/18.3.323
  30. Sigee, D.C., R. Glenn, M.J. Andrews, E.G. Bellinger, R.D. Butler, H.A.S. Epton and R.D. Hendry. 1999. Biological control of cyanobacteria: principles and possibilities. Hydrobiologia. 395/396: 161-172 https://doi.org/10.1023/A:1017097502124
  31. Sommer, U. 1982. Vertical niche separation between two closely related planktonic flagellate species (Rhodomonas lens and Rhodomonas minuta v. nannoplanctica). J. Plankton Res. 4: 137-142 https://doi.org/10.1093/plankt/4.1.137
  32. Tollrian, R. and S.I. Dodson. 1999. Inducible defenses in cladocera: constraints, costs, and multipredator environments. In: Ecology and Evolution of Inducible Defenses (Eds R. Tollrian & C.D. Harvell), pp. 177-202. Princeton University Press, Princeton, USA
  33. Trainor, F.R. 1993. Cyclomorphogenesis in Scenedesmus subspicatus (Chlorococcales, Chlorophyta): Stimulation of colony development at low temperature. Phycologia. 32: 429-433 https://doi.org/10.2216/i0031-8884-32-6-429.1
  34. Van Alstyne, K.L. 1988. Herbivore grazing increases polyphenolic defenses in the intertidal brown alga Fucus distichus. Ecology. 69: 655-663 https://doi.org/10.2307/1941014
  35. Van Donk, E. 1997. Defenses in phytoplankton against grazing induced by nutrient limitation, UV-B stress and infochemicals. Aquat. Ecol. 31: 51-58
  36. Van Donk, M. Lürling, D.O. Hessen and G.M. Lokhorst. 1997. Altered cell wall morphology in nutrient-deficient phytoplankton and its impact on grazers. Limnol Oceanogr. 42: 357-364 https://doi.org/10.4319/lo.1997.42.2.0357
  37. Willen, E., M. Oké and F. González. 1980. Rhodomonas minuta and Rhodomonas lens (Cryptophyceae)- Aspects on form variation and ecology in lakes Mälaren and Vättern Central Sweden. Acta Phytogeogr. Suec. 68: 163-172