An Analysis of the Discovery of Chaos Based on Socio-Cognitive Perspectives

카오스의 발견과 이해에 대한 분석적 검토: 사회적, 인지적 측면을 중심으로

  • Published : 2005.12.30

Abstract

The purpose of this study was to understand mechanisms of scientific discovery and how this can help students, as young scientists, to understand scientific ideas in the science classroom. To unravel this mechanism, this study employed the notion of chaos. This phenomena was rediscovered by Edward Lorenz. In this paper, the general concept of chaos was briefly discussed in relation with previous scientific theories such as Newtonian physics and quantum mechanics. Following this, discovery constraints in terms of available technology at the time was described. In addition, Lorenz's psychological processes during the discovery was also discussed. Based on analysis, major implications for the field of science education were the provision of relevant schemata, the use of cognitive tools, the presentation of problems with various representational forms, and the sharing of ideas with others.

Keywords

References

  1. 김종백 (2003). 디자인 중심학습에서 각명의 역할. 한국교육학연구, 9, 261-277
  2. Cheng, P. C.-H. & Simon, H. A. (1995). Scientific Discovery and Creative Reasoning with Diagrams. In S. Smith, J. Ward, & R. Finke (Eds.), The Creative Cognition Approach (pp. 205-228). Cambridge, MA: MIT Press
  3. Crutchfield, J. P., Fanner, J. D., Packard, N. H, & Shaw, R S. (1986, December). Chaos. Scientific American, 255, 46-57
  4. Devaney, R. (1989). Chaos, fractals, and dynamics: Computer experiments in mathematics [film]. (Available from The Science Television Company., Box 2498 Time Square Station, New York, NY 10108)
  5. Dunbar, K (1993). Concept discovery in a scientific domain. Cognitive Science, 17, 397-434 https://doi.org/10.1207/s15516709cog1703_3
  6. Dunbar, K. (1995). How scientists really reason: Scientific reasoning in real-world laboratories. In R J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 365-395). Cambridge, MA: Cambridge University Press
  7. Gibson, E. J. (1969). Principles of perceptual learning and development. New York: Appleton Centrury-Crofts
  8. Gleick, J. (1987). Chaos: Making a new science. New York: Penguin Books
  9. Gooding, D. (1992). Putting agency back into experiment. In A. Pickering (Ed.), Science as practice and culture (pp. 215-310). Chicago, IL: University of Chicago Press
  10. Henderson, K. (1991). Flexible sketches and inflexible data bases: Visual communication, conscription devices, and boundary objects in design engineering. Science, Technology, & Human Values, 16, 448-473 https://doi.org/10.1177/016224399101600402
  11. Jurgens, H, Peigen, H., & Saupe, D. (1990). The language of fractals. Scientific American, 263, 60-67
  12. Klahr, D., Dunbar, K., & Fay, A. L. (1989). Designing good experiments to test bad hypotheses. In Shrager, J. & Langley, P. (Eds.), Computational models of discovery and theory formation (pp. 355-402), San Francisco, CA: Morgan Kaufman
  13. Latour, B. (1990). Drawing things together. In M Lynch & S. Woolgar (Eds.), Representation in scientific practice (pp, 19-68). Cambridge, MA: MIT Press
  14. Latour, B. & Woolgar, S. (1986). Laboratory life: The construction of scientific facts. Princeton, NJ: Princeton University Press
  15. Lave, J. (1988), Cognition in practice. Cambridge: Cambridge University Press
  16. Lehrer, R, & Schauble, L. (2000). Modeling in mathematics and science. In Robert Glaser (Ed.), Advances in instructional psychology. Educational design and cognitive science (pp. 101-159). Mahwah, NJ: Lawrence Erlbaum
  17. Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 10, 130-141 https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
  18. Lorenz, E. N. (1980). Noisy periodicity and reverse bifurcation In R. Helleman (Ed.). Annuals of the New York Academy of Sciences, 357, 282-291 https://doi.org/10.1111/j.1749-6632.1980.tb29693.x
  19. Lorenz, E. N. (1993). The essence of chaos. Seattle, WA: University of Washington Press
  20. Mandelbrot, B. (1977). Fractal geometry. New York: Freeman
  21. Mandelbrot, B. (1990, September). Fractals - A geometry of nature. New Scientist, 38-41
  22. Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. San Francisco, CA: W. H. Freeman
  23. Minsky, M. (1981). A Framework for Representing Knowledge. In J. Haugeland (Ed.), Mind Design -Philosophy, Psychology, Artificial Intelligence. Cambridge, MA: The MIT Press
  24. May, R. (1989, November). The chaotic rhythms of life. New Scientist, 37-41
  25. Monod, J. (1971). Chance and necessity: An essay on the natural philosophy of modern biology. New York: Knopf
  26. Nersessian, N. J. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In R. N. Giere (Ed.), Minnesota studies in the philosophy of science: Vol. XV. Cognitive models of science (pp. 3-45). Minneapolis, MN: University of Minnesota Press
  27. Palmer, T. (1991). A weather eye on unpredictability. In N., Hall (Ed), Exploring chaos: A guide to the new science of disorder. New York: W.W. Norton & Company
  28. Peitgen, H.-G., Jurgens, H., Saupe, D., & Zahlten, C. (1990). Fractals: An animated discussion, [film]. (Available from New York: W. H. Freeman and Company)
  29. Peterson, I. (1993). Newton's clock: Chaos in the solar system. New York: W. H. Freeman and Company
  30. Poincare, H. (1952). Science and hypxhesis. New York: Dover Publications, Inc.
  31. Qin, Y, & Simon, H. A. (1990). Laboratory replication of scientific discovery processes. Cognitive Science, 14, 281-312 https://doi.org/10.1016/0364-0213(90)90005-H
  32. Rieber, L. P. (1994). Visualization as an aid to problem-solving: Examples from history. In Proceeding of selected research and development presentations. Nashville, TN: National Convention of the Association for Educational Communications and Technology
  33. Ruelle, D. (1991). Chance and chaos. Princeton, NJ: Princeton University Press
  34. Salomon, G. (1993). No distribution without individuals' cognition: a dynamic interactional view. In Salomon (Ed.), Distributed cognition: Psychological and educational consideration (pp. 111-138). Cambridge, MA: Cambridge University Press
  35. Schank, R C. (1988). Creativity as a mechanical process. In R. J. Sternberg (Ed.), The nature of creativity: Contemporary psychological perspectives. Cambridge, MA: Cambridge University Press
  36. Schank, R.C. (1989). Inside Case-based Reasoning. Hillsdale, NJ: Lawrence Erlbaum
  37. Schepard, R. (1988). The imagination of the scientist. In K. Egan & D. Nadaner (Eds.), Imagination and education. New York: Teachers College Press
  38. Simon, H. A. (1989). The scientist as problem solver. In D. Klahr & K. Kotovsky (Ed.), Complex information processing: The impact of Herbert A. Simon(pp. 375-398). Hillsdale, NJ: Erlbaum
  39. Simon, H. A. (1996). The sciences of the artificial (3rd Ed.). Cambridge, MA: MIT Press
  40. Stewart, I. (1989). Does god play dice?: The mathematics of chaos. Cambridge, MA: Basil Blackwell