ON CONGRUENCES OF n-ARY GROUPS

Alexandr M. Gal'mak

Abstract

Properties of congruences on n-ary groups are investigated.

1. Introduction

The first properties of congruences on n-ary groups was described by J. D. Monk and F. M. Sioson in [10], where was shown that the congruences of a fixed n-ary group have the following properties: 1) any two congruences commute; 2) the lattice of all congruences is modular; 3) any two congruences having the same class are identical. In [7] K. Głazek and B. Gleichgewicht observed that the class of all n-ary groups is a Mal'cev variety. Moreover, if A is an n-ary group then each subalgebra of the Cartesian square $A \times A$ containing the diagonal $\{(a, a) \mid a \in A\}$ is a congruence on A. The generalized Zassenhaus Lemma and the generalized Schreier and Hólder-Jordan Theorems (formulated in [2]) holds too. Different connections between congruences of an n-ary group and congruences of its covering group are described in [9]. Many useful facts on congruences of n-ary groups one can find in the author's book [4], where, in particular, is proved that: 4) all classes of the same congruence have the same cardinality; 5) the class containing an n-ary subgroup is a semiinvariant n-ary subgroup. Similarly as in arbitrary groups, 6) any class of a congruence can be expressed by other class of this congruence (see [6]). Note by the way that according to Theorem 32.4 from [13] the

[^0]condition 4) implies 3), which, by [8], implies 2). On the other hand, 2) is a consequence of 1) (cf. Theorem VII. 3.4 of [1]).

2. Preliminaries

According to the general convention similar to that introduced in the theory of n-ary systems by G. Cupona the sequence of elements $x_{i}, x_{i+1}, \ldots, x_{j}$ is denoted by x_{i}^{j}. In the case $j<i$ this symbol is empty.

If $x_{i+1}=x_{i+2}=\ldots=x_{i+k}=x$, then instead of x_{i+1}^{i+k} we write $\stackrel{(k)}{x}$. In this convention $\left[x_{1}, \ldots, x_{n}\right]=\left[x_{1}^{n}\right]$ and

$$
[x_{1}, \ldots, x_{i}, \underbrace{x, \ldots, x}_{k}, x_{i+k+1}, \ldots, x_{n}]=\left[x_{1}^{i}, \stackrel{(k)}{x}, x_{i+k+1}^{n}\right] .
$$

Similarly $\left[x B^{k} C^{n-k-1}\right]$, where B, C are nonempty subsets of A, means the set

$$
\left\{\left[x b_{1}^{k} c_{1}^{n-k-1}\right] \mid b_{1}, \ldots, b_{k} \in B, c_{1}, \ldots, c_{n-k-1} \in C\right\}
$$

A sequence $e_{1}, \ldots, e_{k(n-1)}$ of elements of an n-ary group $(A,[])$ is called neutral (cf. [11, 12]) if

$$
\left[e_{1}^{k(n-1)} a\right]=\left[a e_{1}^{k(n-1)}\right]=a
$$

is valid for every $a \in A$. A sequence β is inverse to the sequence α if $\alpha \beta$ and $\beta \alpha$ are neutral sequences of $(A,[])$ (cf. [11]). An element $\bar{a} \in A$ is called skew to $a \in A$ if

$$
\left[{ }^{(n-1)}{ }^{(n)} \bar{a}\right]=a .
$$

A nonempty subset B of A is an n-ary subgroup of an n-ary group ($A,[]$) if it is closed with respect to the operation [] and $\bar{a} \in B$ for every $a \in B$.

For a congruence σ of $(A,[])$ by $\sigma(x)$ we denote the class containing $x \in A . \sigma B$ denotes the smallest class of σ containing B. If $(B,[])$ of an n-ary subgroup of $(A,[])$, then $(\sigma B,[])$ is an n-ary subgroup too (cf. [4]).

Following Dörnte [3] we say that an n-ary subgroup ($B,[]$) of $(A,[])$ is semiinvariant in $(A,[])$ if

$$
\left[x B^{n-1}\right]=\left[B^{n-1} x\right]
$$

for every $x \in A$.
In [4] it is proved (Proposition 7.4) that for any semiinvariant n subsemigroup ($B,[]$) of an n-ary group ($A,[]$) there exists a congruence ρ_{B} of $(A,[])$ such that $\rho_{B}(a)=\left[a B^{n-1}\right]$ for every $a \in A$. Such congruence is defined by

$$
\rho_{B}=\left\{(a, b) \mid\left[a B^{n-1}\right]=\left[b B^{n-1}\right]\right\} .
$$

The following two technical theorems are proved in [4].
Theorem 1. Let $(B,[])$ and $(C,[])$ be semiinvariant n-ary subgroups of an n-ary group $(A,[])$ such that $C \subseteq B$. Then:

1) $(B / C,[])$ is a semiinvariant n-ary subgroup of n-ary group (A/C, []);
2) $\rho_{C} \subseteq \rho_{B}$;
3) $\rho_{B / C}=\rho_{B} / \rho_{C}$.

Theorem 2. Let $(B,[])$ and $(C,[])$ be seminnvariant n-ary subgroups of an n-ary group $(A,[])$ such that $B \cap C \neq 0$. Then:

1) $\rho_{B \cap C}=\rho_{B} \cap \rho_{C}$;
2) $\rho_{B U C}=\rho_{\left[C B^{n-1}\right]}=\rho_{B} \vee \rho_{C}$;
3) $\rho_{\left[C B^{n-1]}\right.}(x)=\left[x B^{n-1} C^{n-1}\right]$, for all $x \in A$.

TheOrem 3. Let ρ be a congruence of an n-ary group ($A,[]$). Then for all $a, a_{1}, \ldots, a_{n-2} \in A$ we have

1) $\rho(x)=\left[x a_{1}^{i} \rho(c) a_{i+1}^{n-2}\right]=\left[a_{1}^{i} \rho(c) a_{i+1}^{n-2} x\right]$ for every $x \in A$, where
2) $\rho(x)=\left[x^{(i)} \rho(\bar{a}) \stackrel{(n-i-2)}{a}\right]=\left[{ }^{(i)} \rho(\bar{a}) \stackrel{(n-i-2)}{a} x\right], \quad 0 \leq i \leq n-2$;
3) $\rho(x)=\left[x^{(i)} \rho(a) \stackrel{(n-i-3)}{a} \bar{a}\right]=\left[{ }^{(i)} \rho(a)^{(n-i-3)} \bar{a} \bar{a} x\right], \quad 0 \leq i \leq n-3$;
4) $\rho(x)=\left[x^{(i-1)} a \bar{a} \rho(a) \stackrel{(n-i-2)}{a}\right]=\left[{ }^{(i-1)} \bar{a} \rho(a) \stackrel{(n-i-2)}{a} x\right], \quad 0 \leq i \leq n-2$.

The last theorem was proved in [6].

3. Properties of the n-ary subgroup ($\rho B,[]$)

Theorem 4. Let ρ be a congruence of an n-ary group ($A,[]$). Then for every $a \in A$ and an n-ary subgroup $(B,[])$ of $(A,[])$ we have:

$$
\rho B=\left[\rho(a)^{(n-3)} \bar{a} \bar{a} B\right]=\left[B^{(n-3)} \bar{a} \bar{a} \rho(a)\right]=\left[\rho(\bar{a})^{(n-2)} a\right]=\left[B^{(n-2)} a^{(n)} \rho(\bar{a})\right] .
$$

Proof. We prove only $\rho B=\left[\rho(\bar{a})^{(n-2)} B\right]$. The proof other equalities is similar.

Putting $i=0$ in 2) from Theorem 3, we obtain

$$
\begin{equation*}
\rho(x)=\left[\rho(\bar{a})^{(n-2)} a\right] \tag{2}
\end{equation*}
$$

for every $x, a \in A$.
Since for $u \in \rho B$ there exists $b \in B$ such that $u \in \rho(b)$, from (2) we get

$$
u \in\left[\rho(\bar{a})^{(n-2)} a\right] \subseteq\left[\rho(\bar{a})^{(n-2)} B\right]
$$

i.e.

$$
\rho B \subseteq\left[\rho(\bar{a})^{(n-2)} a\right]
$$

Now let $v \in\left[\rho(\bar{a})^{(n-2)} a a\right]$. Then $v \in\left[\rho(\bar{a})^{(n-2)} a\right]$ for some $b \in B$, which, by (2), means that $v \in \rho(b)$. Therefore, $v \in \rho B$ and, in the consequence,

$$
\left[\rho(\bar{a})^{(n-2)} a\right] \subseteq \rho B
$$

Thus $\rho B=\left[\rho(\bar{a})^{(n-2)} B\right]$.
As a simple consequence of the above theorem we obtain the following result firstly proved in [5].

Corollary 1. If ($B,[\mathrm{]}$) is an n-ary subgroup of an n-ary group $(A,[])$, then for any $a \in B$ and any congruence ρ of $(A,[])$ we have:

$$
\rho B=\left[\rho(a) B^{n-1}\right]=\left[B^{n-1} \rho(a)\right]=\left[\rho(\bar{a}) B^{n-1}\right]=\left[B^{n-1} \rho(\bar{a})\right] .
$$

Since for a semiinvariant n-ary subgroup ($C,[]$) of an n-ary group $(A,[])$ we have $\rho_{C}(a)=C$ for every $a \in C$, from Theorem 4 we obtain also

Corollary 2. Let ($B,[]$) and ($C,[]$) be n-ary subgroups of an n-ary group $(A,[])$. If $(C,[])$ is seminvariant in $(A,[])$, then

$$
\rho_{C} B=\left[C^{n-1} B\right]=\left[B C^{n-1}\right] .
$$

Applying Lemma 5.22 from [4] to the last corollary, we obtain
Corollary 3. Let $(B,[])$ and $(C,[])$ be n-ary subgroups of an n ary group $(A,[])$. If $(C,[])$ is semiinvariant in $(A,[])$ and $B \cap C \neq O$, then

$$
\rho_{C} B=\left[C B^{n-1}\right]=\left[B^{n-1} C\right] .
$$

4. Properties of $(\rho \sigma) B$

Theorem 5. For any two congruences ρ and σ of an n-ary group ($A,[]$) and any $0 \leq i \leq n-2,0 \leq j \leq n-2$ the following identity is satisfied

$$
(\rho \sigma)(x)=\left[a_{1}^{i} \rho(c) a_{i+1}^{n-2} b_{1}^{j} \sigma(d) b_{j+1}^{n-2} x\right]=\left[x a_{1}^{i} \sigma(c) a_{i+1}^{n-2} b_{1}^{j} \rho(d) b_{j+1}^{n-2}\right],
$$

where c defined by (1) and

$$
d=\left[\begin{array}{l}
\bar{b}_{j} \stackrel{(n-3)}{b_{j}} \ldots \bar{b}_{1} \stackrel{(n-3)}{b_{1}} \bar{b}_{n-2} \stackrel{(n-3)}{b_{n-2}} \ldots \bar{b}_{j+1} \stackrel{(n-3)}{b_{j+1}}
\end{array}\right] .
$$

Proof. Let $u \in(\rho \sigma)(x)$. Then $(x, u) \in \rho \sigma=\sigma \rho$. So, there exists $z \in A$ such that

$$
\begin{equation*}
(x, z) \in \sigma, \quad(z, u) \in \rho . \tag{3}
\end{equation*}
$$

Applying the first condition of Theorem 3, we obtain

$$
\begin{equation*}
z \in \sigma(x)=\left[b_{1}^{j} \sigma(d) b_{j+1}^{n-2} x\right], \quad u \in \rho(z)=\left[a_{1}^{i} \rho(c) a_{i+1}^{n-2} z\right] . \tag{4}
\end{equation*}
$$

Thus

$$
\begin{equation*}
u \in\left[a_{1}^{i} \rho(c) a_{i+1}^{n-2}\left[b_{1}^{j} \sigma(d) b_{j+1}^{n-2} x\right]\right], \tag{5}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
(\rho \sigma)(x) \subseteq\left[a_{1}^{i} \rho(c) a_{i+1}^{n-2} b_{1}^{j} \sigma(d) b_{j+1}^{n-2} x\right] . \tag{6}
\end{equation*}
$$

Conversely, if (5) holds, then, by Theorem 3, holds also (4), which implies (3). Therefore, $(x, u) \in \rho \sigma=\sigma \rho$ and, in the consequence,

$$
\left[a_{1}^{i} \rho(c) a_{i+1}^{n-2} b_{1}^{j} \sigma(d) b_{j+1}^{n-2} x\right] \subseteq(\rho \sigma)(x)
$$

This proves the first identity.
To the proof of the second identity we must consider the fact that

$$
\sigma(x)=\left[x a_{1}^{i} \sigma(c) a_{i+1}^{n-2}\right], \quad \rho(z)=\left[z b_{1}^{j} \rho(d) b_{j+1}^{n-2}\right] .
$$

The rest is similar.
In particular, putting in the above theorem $a_{1}=b_{1}, \ldots, a_{n-2}=b_{n-2}$ and $i=j$ we obtain

$$
\begin{equation*}
(\rho \sigma)(x)=\left[a_{1}^{i} \rho(c) a_{i+1}^{n-2} a_{1}^{i} \sigma(c) a_{i+1}^{n-2} x\right]=\left[x a_{1}^{i} \sigma(c) a_{i+1}^{n-2} a_{1}^{i} \rho(c) a_{i+1}^{n-2}\right] \tag{7}
\end{equation*}
$$

for every $i \in\{0, \ldots, n-2\}$. This, for $a_{1}=\ldots=a_{n-2}=a$, implies

In the similar way, from (7) we can deduce

$$
\begin{equation*}
(\rho \sigma)(x)=\left[\rho(a) \stackrel{(n-3)}{a} \bar{a} \sigma(a) \stackrel{(n-3)}{a}_{a}^{a} x\right]=\left[x \rho(a)^{(n-3)} a^{(} \bar{a} \sigma(a){ }^{(n-3)} a^{(a)}\right] \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
(\rho \sigma)(a)=\left[\rho(a){ }^{(n-3)} \bar{a} \sigma(a)\right] ; \quad(\rho \sigma)(\bar{a})=\left[\rho(\bar{a})^{(n-2)} a \sigma(\bar{a})\right] . \tag{10}
\end{equation*}
$$

Theorem 6. Let ($B,[]$) be an n-ary subgroup of an n-ary group $(A,[])$. Then for any two congruences ρ and σ of $(A,[])$ and an arbitrary element $a \in A$ we have

$$
\begin{aligned}
& (\rho \sigma) B=\left[\rho(a)^{(n-3)} \bar{a} \bar{a} \sigma(a)^{(n-3)} \bar{a} B\right]=\left[\rho(a)^{(n-3)}{ }_{a} \bar{a} B^{(n-3)}{ }^{(n)} \bar{a} \sigma(a)\right] \\
& =[B \stackrel{(n-3)}{a} \bar{a} \rho(a) \stackrel{(n-3)}{a} \bar{a} \sigma(a)]=[\rho(\bar{a}) \stackrel{(n-2)}{a} \sigma(\bar{a}) \stackrel{(n-2)}{a} B] \\
& =\left[\rho(\bar{a}) \stackrel{(n-2)}{a} B^{(n-2)} \sigma(\bar{a})\right]=\left[B^{(n-2)} \rho(\bar{a}) \stackrel{(n-2)}{a} \sigma(\bar{a})\right]
\end{aligned}
$$

for every $a \in A$.
Proof. From Theorem 4 and (10) we obtain

$$
\begin{aligned}
(\rho \sigma) B=\left[(\rho \sigma)(a)^{(n-3)} a^{a} \bar{a} B\right] & =\left[\left[\rho(a)^{(n-3)} a^{a} \bar{a} \sigma(a)\right]^{(n-3)} a \bar{a} B\right] \\
& =\left[\rho(a)^{(n-3)} \bar{a} \sigma(a)^{(n-3)} \bar{a} B\right],
\end{aligned}
$$

i.e.

$$
(\rho \sigma) B=\left[\rho(a) \stackrel{(n-3)}{a} \bar{a} \sigma(a)^{(n-3)} a^{a} B\right] .
$$

But

$$
\left[\sigma(a)^{(n-3)} \bar{a} B\right]=\left[B^{(n-3)} a \bar{a} \sigma(a)\right], \quad\left[\rho(a)^{(n-3)} \bar{a} B\right]=\left[B^{(n-3)} \bar{a} \rho(a)\right] .
$$

Therefore

$$
(\rho \sigma) B=\left[\rho(a) \stackrel{(n-3)}{a} \bar{a} B{ }^{(n-3)} \bar{a} \sigma(a)\right], \quad(\rho \sigma) B=\left[B^{(n-3)} \bar{a} \rho(a)^{(n-3)}{ }^{(n)} \sigma(a)\right] .
$$

Others identities can be proved analogously.
Corollary 4. Let ($B,[]$) be an n-ary subgroup of an n-ary group ($A,[]$). Then for any two congruences ρ and σ of $(A,[])$ and any $a \in B$ we have

$$
\begin{aligned}
& (\rho \sigma) B=\left[\rho(a)^{(n-3)} \bar{a} \sigma(a) B^{n-1}\right]=\left[B^{n-1} \rho(a)^{(n-3)} \bar{a} \bar{a} \sigma(a)\right] \\
& (\rho \sigma) B=\left[\rho(\bar{a})^{(n-2)} a(\bar{a}) B^{n-1}\right]=\left[B^{n-1} \rho(\bar{a})^{(n-3)} a(\bar{a})\right] .
\end{aligned}
$$

Corollary 5. Let $(B,[])$ and $(C,[])$ be n-ary subgroups of an n-ary group $(A,[])$. If $(C,[])$ is semiinvariant in $(A,[])$ and σ is a congruence of $(A,[])$, then

1) $\left(\rho_{C} \sigma\right) B=\left[C^{n-1} \sigma(a)^{(n-3)} \bar{a} B\right]=\left[C^{n-1} \sigma(\bar{a}){ }^{(n-2)} B\right]$ for every $a \in$ C;
2) if $B \cap C \neq \bigcirc$, then $\left(\rho_{C} \sigma\right) B=\left[C^{n-1} \sigma(a) B^{n-1}\right]=\left[C^{n-1} \sigma(\bar{a}) B^{n-1}\right]$ for every $a \in B \cap C$.

Corollary 6. Let ($B,[]$), ($C,[]$) and ($D,[]$) be n-ary subgroups of an n-ary group $(A,[])$. If $(C,[])$ and $(D,[])$ are semiinvariant in ($A,[]$), then

1) $\left(\rho_{C} \rho_{D}\right) B=\left[C^{n-1} D^{n-1} B\right]$ if $C \cap D \neq \emptyset$;
2) $\left(\rho_{C} \rho_{D}\right) B=\left[C^{n-1} D B^{n-1}\right]=\left[C D^{n-1} B^{n-1}\right]$ if $B \cap C \cap D \neq \mathrm{O}$.

REFERENCES

[1] G. Birkhof, Lattice theory, (Russian), Moscow 1984.
[2] P. M. Cohn, Universal algebra, Harper and Row, New York, 1965.
[3] W. Dörnte, Untersuchungen wber einen verallgememerten Gruppenbegrieff, Math. Z. 29 (1928), 1-19.
[4] A. M. Gal'mak, Congruences of polyadic groups, (Russian), Minsk 1999.
[5] A. M. Gal'mak, n-Ary analogies of Hall subgroups, Vesnik of the Mogilev State University 2-3 (2001), 117-123.
[6] A. M. Gal'mak, On congruence classes on polyadic groups, Vesnik of the Vitebsk State University $2(2002), 114-118$.
[7] K. Głazek, B. Gleichgewicht, Abelian n-groups, Colloquia Math. Soc. J. Bolyai, 29 Universal Algebra, Esztergom (Hungary), 1977.
[8] J. Hagemann, On regular and weadly regalar congruences, Preprint TH Darmstadt 75 (1973).
[9] B. Janeva, Congruences on n-groups, Matematićki Bilten 45 (1995), 85-90.
[10] J. D. Monk, F. M. Sioson, On the general theory of m-groups, Fund. Math. 72 (1971), $233-244$.
[11] E. L. Post, Polyadic groups, Trans. Amer. Math. Soc. 2 (1940), 208-350.
[12] S. A. Rusakov, Algebraic n-ary systems, (Russian), Minsk 1992.
[13] D. M. Smirnov, Varieties of algebras, (Russian), Novosibirsk 1992.

Mogilev State Foodstuffs University, Smidta 3212027 Mogilev, Belarus
E-mail: mti@mogilev.by

[^0]: Received October 10, 2005.
 2000 Mathematics Subject Classification: 20 N15.
 Key words and phrases: n-ary group, congruence.

