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SOME RESULTS ASSOCIATED WITH CERTAIN
ANALYTIC AND UNIVALENT FUNCTIONS
INVOLVING FRACTIONAL DERIVATIVE
OPERATORS

H. IRMAK anp R. K. RAINA

ABSTRACT. This paper investigates some results (Theorems 2.1-
2.3, below) concerning certain classes of analytic and univalent
functions, involving the familiar fractional derivative operators.
We state interesting consequences arising from the main results
by mentioning the cases connected with the starlikeness, convex-
ity, close-to-convexity and quasi-convexity of geometric function
theory. Relevant connections with known results are also empha-
sized briefly.

1. Introduction and Definitions

Let A, denote the class of functions f(z) normalized by

f(2) = 24 1T F a2+ (neN={1,2,3,---}), (1.1)

which are analytic and univalent in the open unit disc U = {z €
C : |z < 1}.

We denote by Si(a), K.(@), C.(a, 3} and C}(a, 3), the subclasses
of the class A,, consisting of functions which are, respectively, starfike
of order a, convex of order a, close-to-convex of order 3 and type a,

and quasi-convexr of order 3 and type o in U, where 0 < a < 1 and

Received September 20, 2005,

2000 Mathematics Subject Classification: 30C45, 26 A33, 30A10.

Key words and phrases: Normalized analytic functions, univalent functions,
fractional calculus operators, convexity, starlikeness, close-to-convexity, quasi-
convexity, inequalities, Jack’s Lemma, Nunokawa’s Lemma.



220 H. IRMAK snp R. K. RAINA

() < B < 1. The analytic characterizations of these subclasses, as we
know, are respectively, defined in the following forms:

S1a) = {fe Ay Re <sz<z)> > }

f(z)
Knla) == {f €A, : Re (1 + :;:("’;U > C}i}a
_ e (2112 o o
Colex, B) := {fEAn : iRe( 02) ) >3 yES,,,.(a)},

nd
a Cia, B) = {f €A, : Re ([35((;”’) S8 ge K.,l(a)},

where 0 < a < 1,0< 3 < 1, and 2 € U. For more details of the
above definitions, one may refer to 1], [2] and [9] (see also [11], [15]).

It is evident from the aforementioned definitions that
fzye Kula) & zf'(2) € Si(a),
and
fz) e Cila.B) & zf(z) € Coler, B),
where 0 < a<1,0< G <1,and f{z) € A,.
We first need the following definitions of fractional calculus oper-

ators which will be used in Section 2 ([10], [12]; see also, e.g., [3],

[4)). ’

DEFINITION 1.1. Let a function k(z) be analytic in a simply-
connected region of the z-plane containing the origin. The fractional
derivative of order p (0 < p < 1) is defined by

DHR)} = prm gz [ HOG-97E ()

where the multiplicity of (z — &)™ involved in (1.2) is removed by
requiring log(z — &) to be real when 2 —§& > 0.
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DEFINITION L.2. Under the hypotheses of Definition 1, the frac-
tional derivative of order m +  is defined by

DT (2} = d% {D¥{K(z)}} (meN;=NU{0};0<pu<1).
i (1.3)
It follows from (1.1}, {1.2) and (1.3} that

1—p—m > Ck+1) 3 !

prte -3 = Z— 5 k—p—m+1
z {f( )} 1’1(2_#_7}1) +k.§|—l F(f’{}—j_é—ﬁ'n‘k 1)(””2 ?
(1.4)

(m < 2—p;m e Ng; f(z) € A).

Making use of the fractional calculus operators defined by (1.2) and
(1.3}, we establish certain results by applying the well known lemmas
of Jack [7] and Nunokawa [8]. As a consequence of the main results, we
point out the relationship of the results with geometrically important
subclasses of functions which are, respectively, starlike of order «,
convex of order «, close-to-convex of order 5 and type «, quasi-convex
of order § and type o, where 0 <a<land 0 < 8 < 1.

We require the following lemmas:
LEMMA 1.1. ([7]) Let a function w{z) be non-constant and analytic

in U with w{0) = 0. If |w(z)| attains its maximum value on the circle
|z| =7 < 1 at the point =y, then

2w’ (2)
w(z)

LEMMA 1.2. ([8]) Let p(=) be an analyvtic function in U with p(0) =
1. If there exists a point zp € U such that

Re {p(=)} > 0 (2] < |z0l). Re{p(0)} =0 and p(z0) #0,

=c {c2>1).

Z=2z(

then
2p/(2)
p(=)

=i

zZ=2zp

p(z0) = ia and

(a—l— é) {(a#0; c> 1).

[\ e
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2. The Main Results
We first begin by proving the following result.

THEOREM 2.1. Let the functions f,q € A, {(f # ¢), and also let
the function ‘H be defined by

D f(2)} Dlﬂ'{q(z)}) N
H{z) =2 z =z L _ 21
) ( DI} D)} (2.1)
If 1
Re{H(z)}} <v—p+ 3 (2.2)
is satished, then
- Di‘{f(:”)}) . |
§R€ Z‘u v, _ AN ~ U? 23
( Dr{9(2)} (23)
where
_ U when p—v>0
OS#<1,0§V<1aZ€E—{D:U_{O} '?.Uh-en,f.i.—y<0}‘

Proof. Let the functions f(z) € A, be given by (1.1) and ¢(z) € A,
be defined by
() = 2+ b1 + b2+ (nEN), (2.4)
with f(z} # ¢(z). From {1.1) and (2.4) in conjunction with the repre-
sentation (1.4), it follows that

Zl—p oC r k-f—].]].—‘(z—ﬂ-} k=1
Df;{f(z)} . T(2—) (1 + Zk=n+l C{k—p+1) R )

Drig(z)} v Tt D2—) 7 41\
Y{y(=)} Fo) (1 +Ez°:n+l l"(k——r_z—rl}ybk”'k 1)

We now define a function w(z) by

D] T e O<ps bogve. @9

so that the function w{z) from (2.5) is explicitly given by

M=V F(2 - ,U) . Dg{f(Z)} _

'u,.'(z) = =~ 1_‘(2 — ;/) 'D;’{g(z)} 1 (0 < H< l,U Lv< l) (26)
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We observe that for z = 0, w(0) = 0, and further w/(z) given by (2.6)
is analytic for every z in E.
We then obtain from the logarithmic differentiation of (2.5} that
Dltuf f(~ DIV Lo ~w'{z
H(;’)E;’( H,u {f( )}_ zv {g( )}):V—,U-+ ?()
De{fa)}  Di{gla)} 1+ w(z)

Assume now that there exists a point 2 € E such that

(2.7)

lw(z}| =1, and |w(z)| <1 when |z| <|z| (2 € E}.
Then, applying Lemma 1.1, we have
20w (20) = cw(z) (c>1; w(z) =e¥ # -1). (2.8)
Thus, {2.7) and (2.8) yield that

2u'{z)
1+ w(z) 2 2
(2.9)
But the inequality in (2.9} is a contradiction to our assumption in
(2.2). Therefore, |w(z)| < I for all = € E. Hence, (2.6} immediately
yields that

Re{H(z0)} =v —p+ Re (

c 1
):V—#+—ZU—#+<
Z=2zq

e T DAY
T Te—n Dig}

(fye A0 <pu<1,0<v<1;z€E),

which implies that

H=v F(Q - l'-"') . Df;{f(:)}
e (z @) ’D:{g(z)}) >0

(fye A0 <pu<1,0<v<1;z€E),

1‘ = lw(z)] < 1

and the desired assertion (2.3) follows, since ?g:‘:ﬂ {(for0 < < 1and

0 < v < 1) is always positive. This completes the proof of Theorem
2.1.

Our second result is contained in
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THEOREM 2.2. Let the functions f,g € A, (f # g), and H be
defined by (2.1). If

a—1

Re{H(2)} >v—p+ S0Ta)

(2.10)

is satisfied, then
] D“{f(:)}) (1+a)l2-v)
Re | =77 == > . 2.11
(* wor) > e (21D
where ) <a <1, 0< u<,0<v<l,andz € E.

Proof. Let us define the function u(z) by

De{f(=)} T(2-w) o 1+ oulz)

Diiglz)p  T(2—p) 1+ u(=)

then u{>) is an analytic function in E, and »{(0) = 0. It follows from
(2.12) including w(z) that

(zeE; 0 <a<]1), (2.12)

axu'(2) 2 (2)
1+ ou(z) L+u(z)’

Hiz)=v—p+

where H{z} is given by (2.1).
If we now suppose that there exists a point 2o € E such that
MaX|z|<|zo| [6{2)] = [ul(z0}] = 1,
then Lemma 1.1 gives
20w (29) = culz) (> 1; ul(s) = e # —1).
Therefore, we have

u—v+Re{H{z)} = Re { azot(20) Zot' (20) }

1+au(zo) 1+ u(zo)
e’ ety a-—1
=c Re — — _ <
¢ Re (1 + aew 1—|—e"¥’> T 2(1+a)’
which contradicts the hypothesis in (2.10) of Theorem 2.2, so that
lu(=}| < 1 for all = € E, and {2.12) immediately yields then

'D?{f(z)} R I F{Q—.i/)

Dy {g(2)} T | _ 1.
al(2=v) _ DR .y | u(=)] <1
F2-w)  Diglx)} ~

(f,g€ Ay0<a<,0<u<1;0<r <12 € E),
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which is equivalent to the assertion (2.11), and the proof of Theorem
2.2 is complete.

Our last result is contained in

THEOREM 2.3. Let the functions f,g € A, (f # ¢), and H be
defined by (2.1). If any one of the following conditions:

_ 3 > U(v gl —a) when 0<a<i 5
Re{H(=)} { > Uy, it @) when 3<a<l [° (2.13)
is satisfied, then
D# 'z -
Dy{g(~)} I'(2 = p)
where 0 <a <1, 0< u<,0<v <1, z€E and
W, o) = v — gy — = (2.15)
20

Proof. We define a function p(z} (involving the fractional derivative
operator {1.2)} by
DL} TR—v)
Dy{g(z)} T(2-p)
where 2 € E,0<a<,0< u<1and 0 <y < 1. Then, it is easily
verified that the function p{z) is analytic in E, with p{0)=1. Upon
differentiating {2.16), we obtain that
(1 - /()
&t (1-a)pl2)
where the function H{z) is given by (2.1).
Suppose there exists a point zg € E such that

Re {p(2)} >0 (2] < |20l), Re{p(z0)} =0, and p(z) #0 (z € E).

Then, by using Lemma 1.2, we have

R a4 (1 — a)p(2)], (2.16)

H(z)=v—p—

(zel;, 0< <), (2.17)

s .
p(2) = ta and 2P/ {z0) = iz (a + i) (@#0; c>1). (2.18)
(20) 2 a
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Thus, from (2.17) and (2.18), we obtain

(1—a)zp/(z) p(=)
p(=) a+ (1 —alp(z)
ca{l — a)(1l + a?)
o T a1~ oy
{ <VU(vgul—a) when 0<a<i }
< U(v, g @) when ;<a<l1 [°

e {H(x)} =v—p+Re {

z=zo}

(2.19)

:j‘/—’l_‘l}

where W(w, p; «) is given by {2.15). But, the inequalities in (2.19)
contradict our assumptions imposed in {2.13). Hence, Re {p(2)} > 0
for all 2 € E. Therefore, (2.16) evidently yields {2.14), and the desired
proof of Theorem 2.3 is complete.

3. Some Consequences of the Main Results

The various results of importance in the geometric - function the-
ory can be obtained easily and conveniently from the main results
{Theorems 2.1-2.3). These results can be achieved by choosing the
parameters and functions, appropriately, in the related theorems. We
would in brief mention a scheme of steps below which one may apply
to arrive at different known {and new results).

(i) The order of derivatives v and p in the defined equation {2.1),
and in the inequalities stated in Theorems 2.1-2.3 should be chosen,
respectively, as (v = O and u = 0), (v = 0 and p — 1-), (v —
l— and p=0)or{r—1— and p — 1-).

(ii) The function g(z) € A,, may be selected instead of f(z) € A,,
or f(z) € A, be chosen instead of g(z) € A,, in Theorems 2.1-2.3.

(iii} The function ¢{z} € A, may be chosen to belong to the classes
Si(B) or K,(8). A similar situation can also be considered for the
function f{z) € A,.

(iv) The functions f{z) € A, and/or ¢{z) € A,, in the equal-
ity (2.1), and in the inequalities given in Theorems 2.1-2.3, may be
replaced by zf'(2) (f(2) € A,) and/or z¢'(2) (g(2) € An).

The special cases which would arise from the main results with the
help of the above mentioned steps in (i}-(iv) can be compared with
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the results which have appeared recently in [3], [4], [5], [6], [11], [13]
and [14]. To illustrate, we give below some examples.

By taking # = 0 and v = 0, in Theorems 2.1-2.3, respectively, re-
placing f by z f’, and choosing ¢(z) € §}(3), we arrive at the following
corollary.

COROLLARY 3.1. Let the functions f{z) € A,, and g{z} € S} ()
(f # ¢), and also let the function G\(z) be defined by

N ) 2@
Gi(=) = == oo zel)

Then
(a) Re[Gi(2)] <3 = [f(2)€Ca(B.0),
(b) Re[Gi(=)] > -7 = f(2) € CalB, (1 + @)/2),

20+
o >y if 0<a<y 3 _.
(©) sfee[gl(z)]{ BTy iaciif % MOecEa)

If 4t — 1— and v = 0 in Theorems 2.1-2.3, and we choose ¢{z} €
Sk(3), we arrive at the following corollary.

COROLLARY 3.2. Let the functions f{z) € A,, and g{z} € S}(5)
(f # ¢), and also let the function Go(z) be defined by

G:(:) == (58 -28) (zeu).

Then
(a) Re[Ga{z)] < -1 = f(z) €C.(8,0),
(b) Re[Gao(2)] > 5t = f(3) € Ca(B8,(1+a)/2),

i 1
—< jf 0<a<s
> o 0sas; } = f(2) € CulB, ).

2(1—a)
(c) Re(Ga(2)] { > Lo jr Lag <

2a
Next, if we again set g — 1— and » = 0 in Theorems 2.1-2.3, and

let f{z) = 2f'(z) (f{2) € An) and ¢(z) := =¢'(2) (9(3) € Ka(B)),

then we get the following result.

COROLLARY 3.3. Let the functions f,g € A, (f # g), and also let
the function Gs(>) be defined by
2722 f (=2 z¢'{(z (z £7 5
Gi(2) 1= > (LA - L9HD) (gl € K1z € V).
Then

(a) Re[Gs()] < -3 = f(x) €CLB,0),
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(b) RelGa(:)] > 2 = f(2) € Co(B, (1 +a)/2),

> 28 jf (<<
© Reloa@l{ Z TG 13057 = foeqme.
2 =

2ax

Making use of Theorem 2.1, we establish the following result:

COROLLARY 34. Let 0 < v < 1,0< 6 < 1, f.g € A, and also let
the function g satisfy the condition:

Re (%) >4 (0Ld<;zeU). (3.1)
Then
Re [Ga(z)] <v—p+d+ % = Re[Gs(z)] > 0, (3.2)
where
110 SN 2 ¢115)
e A T e T

(3.3)

Proof. Let the function w{z) be defined by (2.6). Then, in view of
(2.7), we know that

2D ()} aw'(z) | DI{g(2)}

IS T W S 7 PTE T
or, equivalently,
gaazu—#+lf”?)+%u) (3.4)

where G4(z) and Gs{z} are given by (3.3). From the various assump-
tions in the proof of Theorem 2.1 {in view of of Jack's Lemma (2.1}),
together with the condition (3.1}, we easily find that

zou' (%) )

Re [Cy(z0)] = v — p + Re [Gn(20)] + Re (l-l-—w(:o)

:u—,qu%—l—?Re[%(zg)]2u—,u+5+%,
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which contradicts our assumption in {3.2) (when ¢ = 1}. The desired
assertion of the Corollary 3.4 follows now from the definition of the
function w(z) given by (2.6).

Lastly, the below mentioned results can be established by following
similar steps as outlined in the proof of Corollary 3.4 above, and also
using in the process Theorems 3.2 and 3.3, respectively (along with
the assumption (3.5} below).

COROLLARY 3.5. Let 0 < v < 1,0< 6 < 1, f.g € A, and also let
the function g satisfy the condition:

o (D 9(2)} _ .
Re (—D’;{g(:)} ) <§ (0<d<1;2€U). (3.5)
Then o
(a) Re[Ga(2)] > v—p+ 6+ h
(1+a)'(2-r)

= Re[Gs(2)] >

A (2—p)

. >3+ (v, ul—a) if 0<a<:
(b) 3?6[94@)]{ >4+ Uiy, p; a) if %§a<i
al'(2 - v)
T2 —p)

where U(v, i, ) and Gi(z) (¢ = 4,5) are given by (2.15) and (3.3),
respectively.

= Re [Gr(2})] >
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