ON THE CLASS OF S_{3}-ALGEBRAS

Farhat Nisar and Shaban Ali Bhatti

Abstract

In this paper we investigate some more properties of of S_{3}-algebras. We also prove that the class of S_{3}-algebras is contained in the class of commutative BCI-algebras.

Introduction

In [6], K. Iseki gave the concept of BCI-algebras.In [1], S.A. Bhatti, M.A. Chaudhry and B. Ahmad classified BCI-algebras into S_{i}-algebras, $\mathrm{i}=1,2,3,4$ and investigated some properties of these algebras.
In this paper we investigate some more properties of of S_{3}-algebras. We also prove tahat the class of S_{3}-algebras is contained in the class of commutative BCI-algebras.

1. Preliminaries

Definition 1.1. [6] A BCI-algebra X is an abstract algebra $(X, *, o)$ of type (2,0), where ${ }^{*}$ is a binary operation, o is a constant which is the smallest element in X, satisfying the following conditions; for all $x, y, z \in X$,
$1.1((x * y) *(x * z)) *(z * y)=o$
$1.2(x *(x * y)) * y=o$
$1.3 x * x=0$
$1.4 x * y=o=y * x \Rightarrow x=y$
$1.5 x * o=o \Rightarrow x=o$

Key words and phrases: BCK-algebra, BCI-algebra, S_{3}-algebra.
where $x * y=o \Leftrightarrow x \leq y$
If $o * x=o$ holds for all $x \in X$, then X is a BCK-algebra. [4, 5]
Moreover, the following properties hold in every BCK/BCI-algebra ([6]):
$1.6 x * o=x$
$1.7(x * y) * z=(x * z) * y$
1.8 Let X be a BCI-algebra with M as its BCK-part. For $m \in M$, $x \in X-M, m * x, x * m \in X-M$. [6]
$1.9 x *(x *(x * y))=x * y$
$1.10 o *(x * y))=(o * x) *(o * y)$
We prove (1.10) as follows:

$$
\begin{align*}
& o *(x * y) & =((o * y) *(o * y)) *(x * y) & \tag{Becauseof1.3}\\
\Rightarrow \quad o *(x * y) & =((o * y) *(x * y)) *(o * y) & & \text { (Because of } 1.3) \\
\Rightarrow \quad o *(x * y) & =(((x * x) * y) *(x * y)) *(o * y) & & \text { (Because of } 1.7) \\
\Rightarrow \quad o *(x * y) & =(((x * y) * x) *(x * y)) *(o * y) & & \text { (Because of } 1.3) \\
\Rightarrow & o *(x * y) & =((x * y) *(x * y)) * x) *(o * y) & \\
\hline \Rightarrow \quad o *(x * y) & =(o * x) *(o * y) & & \text { (Because of } 1.7) \\
\Rightarrow & & & (\text { Because of } 1.3)
\end{align*}
$$

1.11 Let X be a BCI-algebra. If $M=o$, then X is called a psemisimple BCI-algebra.[7]
1.12 Let X be a p-semisimple BCI-algebra. The following properties are equivalent:
(i) X be a p-semisimple.
(ii) $O *(o * x)=x .[7]$

Definition 1.2. [6] A nonempty subset S of a BCI-algebra X is known as a subalgebra of X, if

$$
x, y \in S \Rightarrow x * y \in X
$$

Definition 1.3. [4] A BCK-algerba X is said to be commutative if $y *(y * x)=x *(x * y)$ holds for all $x, y \in X$.

Definition 1.4. [4] A BCK-algerba X is said to be implicative if $x *(y * x)=x$ holds for all $x, y \in X$.
1.13 An implicative BCK-algebra is commutative and positive implicative. [4]

Theorem 1. [2] A BCI-algebra $(X, *, o)$ is commutative if and only if it satisfies the condition for all $x, y \in X$,

$$
x *(x * y)=y *(y *(x *(x * y))
$$

Definition 1.5. [3] A BCI-algebra $(X, *, o)$ is said to be positive implicative if it satisfies the condition for all $x, y \in X$,

$$
(x *(x * y)) *(y * x)=x *(x *(y *(y * x))
$$

Definition 1.6. [1] Let X be a BCI-algebra, for $x, y \in X, x, y$ are said to be comparable if $x \leq y$ or $y \leq x$.
Similarly in BCK-algebras, if $x * y=o$ or $y * x=o$, then x and y are comparable.

Definition 1.7. [1] Let X be a BCI-algerba. We choose an element $x_{o} \in X$ such that there does not exist any $y \neq x_{o}$, satisfying $y * x_{o}=0$ and define

$$
A\left(x_{o}\right)=\left\{x \in X: x_{o} * x=o\right\}
$$

$A\left(x_{o}\right)$ is known as the branch of X determined by x_{0}. Let I_{x} denote the set of all initial elements of X. We call it the center of X. The reason for calling this subset as the center of X is that each branch originates from a unique point of this subset. Note that each branch $A\left(x_{o}\right)$ is nonempty, because of (1.3), $x_{o} * x_{o}=o \Rightarrow x_{o} \in A\left(x_{o}\right)$. Also note that the BCK-part M of the BCI-algebra X is equal to $A(o)$ because

$$
M=\{x \in X ; o * x=o\}=A(o)
$$

If $A\left(x_{o}\right)=\left\{x_{o}\right\}$, then $A\left(x_{o}\right)$ the branch determined by x_{o} is known as a uniary comparable.

Definition 1.8. [1] A proper BCI-algerba X with $M \neq o$ is S_{3-} algebra if each $A\left(x_{0}\right)$ in $X-M$ is uniary comparable i.e for all $x \in$ $X-M, A(x)=\{x\}$.

Theorem 2. [1] Let X be a S_{3}-algebra with M as its BCK-part. Then $G=\{o\} \bigcup(X-M)$ is a subalgebra.

Theorem 3. [1] Let X be a S_{3}-algebra with M as its BCK-part. Then the following hold:
(1) $x *(x * y)=y$, for all $x \in X, y \in X-M$.
(2) $y * x=y$, for all $x \in M, y \in X-M$.
(3) $x * y=o * y$, for all $x \in M, y \in X-M$.
(4) $o *(y * x)=x * y$, for all $x \in M, y \in X-M$.
(5) $x *(o * y)=y$, for all $x \in X, y \in X-M$.

Lemma 1. Let X be a S_{3}-algebra. Then for all $x \in X-M$, $o *(o * x)=x$

Proof. Let X be a S_{3}-algebra with M as its BCK-part. Because of (1.8), for $o \in M, x \in X-M, o * x \in X-M$. Again by (1.8), $o \in M$, $o * x \in X-M, o *(o * x) \in X-M$. Since X is a S_{3}-algebra, therefore by (1.2),

$$
\begin{equation*}
o *(o * x) \leq x \tag{1}
\end{equation*}
$$

As $x \in X-M$, so $A(x)=\{x\}$. Thus inequality (1) becomes

$$
o *(o * x)=x
$$

This gives the proof.
Lemma 2. Let X be a S_{3}-algebra with M as its BCK-part. Then $G=\{o\} \bigcup(X-M)$ is p-semisimple.

Proof. By theorem 2[1], $G=\{o\} \bigcup(X-M)$ is a subalgebra of X. According to above lemma 1, for all $x \in X-M \subset G, o *(o * x)=x$. Further for $o \in G=\{o\} \bigcup(X-M), o *(o * o)=o$. Thus for all $x \in G=\{o\} \bigcup(X-M), o *(o * x)=x$. Hence because of (1.12), part (ii), G is p-semisimple.

Since every p-semisimple algebra is a S_{4}-algebra (see $[1$, theorem 6]), the p-semisimple algebra $G=\{o\} \bigcup(X-M)$ described in lemma 2 is a S_{4}-algebra.

Example 1. Let $X=\{o, a, b, c, d, e, f\}$ be a S_{3}-algebra in which * is defined as follows:

Table 1

*	o	a	b	c	d	e	f
o	o	o	o	f	e	d	c
a	a	o	o	f	e	d	c
b	b	a	o	f	e	d	c
c	c	c	c	o	f	e	d
d	d	d	d	c	o	f	e
e	e	e	e	d	c	o	f
f	f	f	f	e	d	c	o

Note that BCK-part $M=A(o)=\{o, a, b\}$ and BCI-part $X-M=$ $\{c, d, e, f\}$. Since X is a S_{3}-algebra, therefore $A(c)=\{c\}, A(d)=$ $\{d\}, A(e)=\{e\}$ and $A(f)=\{f\}$. So, $G=\{o\} \bigcup(X-M)=$ $\{o, c, d, e, f\}$. Note that G is a p-semisimple BCI-algebra. Also note that for all $x \in X-M, o *(o * x)=x$.

Example 2. Let $X=\{o, a, b, c, d, e, f\}$ be a S_{3}-algebra in which * is defined as follows:

Table 2

*	o	a	b	c	d	e	f
o	o	o	o	o	d	e	f
a	a	o	a	a	d	e	f
b	b	b	o	b	d	e	f
c	c	c	c	o	d	e	f
d	d	d	d	d	o	f	e
e	e	e	e	e	f	o	d
f	f	f	f	f	e	d	o

Note that BCK-part $M=A(o)=\{o, a, b, c\}$ and BCI-part X $M=\{d, e, f\}$. Since X is a S_{3}-algebra, therefore $A(d)=\{d\}$, $A(e)=\{e\}$ and $A(f)=\{f\}$. So, $G=\{o\} \bigcup(X-M)=\{o, d, e, f\}$. Note that G is a p-semisimple BCI-algebra. Also note that for all $x \in X-M, o *(o * x)=x$.

Theorem 4. Let X be a S_{3}-algebra with M as its BCK-part. Then the following hold:
For $x, y \in M, z \in X-M$,
(i) $o *(x * y)=y, x \in M, y \in X-M$
(ii) $y *(y * x)=o, x \in M, y \in X-M$
(iii) $x * z=y * z, x, y \in M, z \in X-M$

Proof. (i) Since S_{3}-algebra is a BCI-algebra, therefore by (1.10), for all $x, y \in X$,

$$
\begin{equation*}
o *(x * y)=(o * x) *(o * y) \tag{1}
\end{equation*}
$$

Suppose that $x \in M$ and $y \in X-M$. Since M is a BCK-algebra, therefore $o * x=o$, so equation (1) becomes

$$
o *(x * y)=o *(o * y)
$$

Because $y \in X-M$, therefore by lemma $1, o *(o * y)=y$. Thus above equation becomes

$$
o *(x * y)=y
$$

(ii) Because of theorem 3, part (2), for $x \in M, y \in X-M$,

$$
\begin{aligned}
& y * x=y \\
\Rightarrow & y *(y * x)=y * y \\
\Rightarrow & y *(y * x)=o
\end{aligned}
$$

(iii) Because of part (i), for $x \in M, z \in X-M$,

$$
\begin{aligned}
& o *(x * z)=z \\
\Rightarrow \quad & o *(o *(x * z))=o * z
\end{aligned}
$$

For $x \in M, z \in X-M$, by (1.8), $x * z \in X-M$. So, by lemma 1, above equation implies that

$$
\begin{equation*}
x * z=o * z \tag{2}
\end{equation*}
$$

Similarly, for $y \in M, z \in X-M$,

$$
\begin{equation*}
y * z=o * z \tag{3}
\end{equation*}
$$

From equations (2) and (3) it follows that

$$
x * \approx=y * z
$$

This givesthe proof.

Theorem 5. Let X be a S_{3}-algebra with commutative BCK-part M. Then X is a commutative $B C I$-algebra.

Proof. Let X be a S_{3}-algebra with commutative BCK-part M. For distinct $x, y \in X$, we have the following three possibilities:
(1) $x, y \in M$
(2) $x, y \in X-M$
(3) $x \in M, y \in X-M$

Case (1): Let $x, y \in M$. Because M is a commutative BCK-algebra, therefore

$$
\begin{aligned}
& x *(x * y)=y *(y * x) \\
\Rightarrow & y *(x *(x * y))=y *(y *(y * x)) \\
\Rightarrow & y *(x *(x * y))=y * x \quad(u s i n g(1.9)) \\
\Rightarrow & y *(y *(x *(x * y)))=y *(y * x)
\end{aligned}
$$

In this case M is commutative, therefore we replace $y *(y * x)$ by $x *(x * y)$ and get

$$
\begin{equation*}
y *(y *(x *(x * y)))=x *(x * y) \tag{A}
\end{equation*}
$$

Case (2): Let $x, y \in X-M$. Then for $x \in X-M \subset X, y \in X-M$, by theorem 3, part (1),

$$
\begin{array}{rlr}
& x *(x * y)=y \\
\Rightarrow & y *(x *(x * y))=y * y=o \\
\Rightarrow & y *(y *(x *(x * y)))=y * o=y \quad(u \operatorname{sing} g(1.3)) \\
& (1.6))
\end{array}
$$

But in this case $y=x *(x * y)$, so replacing y by $x *(x * y)$, above equation becomes

$$
\begin{equation*}
y *(y *(x *(x * y)))=x *(x * y) \tag{B}
\end{equation*}
$$

Case (3): Let $x \in M, y \in X-M$. Then by theorem 4 , part (2),

$$
\begin{aligned}
& y *(y * x)=o \\
\Rightarrow & x *(y *(y * x))=x * o=x \\
\Rightarrow & x *(x *(y *(y * x)))=x * x=o
\end{aligned}
$$

But in this case $o=y *(y * x)$, so replacing o by $y *(y * x)$, above equation becomes

$$
\begin{equation*}
x *(x *(y *(y * x)))=y *(y * x) \tag{C}
\end{equation*}
$$

Further for $x \in M \subset X, y \in X-M$, by theorem 3, part (1),

$$
\begin{aligned}
& x *(x * y)=y \\
\Rightarrow & y *(x *(x * y))=y * y=o \\
\Rightarrow & y *(y *(x *(x * y)))=y * o=y
\end{aligned}
$$

But in this case $y=x *(x * y)$, so replacing y by $x *(x * y)$, above equation becomes

$$
\begin{equation*}
y * y *(x *(x * y))=x *(x * y) \tag{D}
\end{equation*}
$$

Hence from (A), (B), (C) and (D)

$$
x *(x * y)=y *(y *(x *(x * y))
$$

which implies that X is a commutative BCI-algebra.
Theorem 6. If the BCK-part of a S_{z}-algebra implicative then X is a positive implicative BCI -algebra.

Proof. Let X be a S_{3}-algebra with implicative BCK-part M. For distinct $x, y \in X$, we have the following three possibilities:
(1) $x, y \in M$
(2) $x, y \in X-M$
(3) $x \in M, y \in X-M$

Case (1): Let $x, y \in M$. Because M is an implicative BCK-algebra, therefore

$$
\begin{aligned}
& x *(y * x)=x \\
\Rightarrow \quad & (x *(y * x)) *(x * y)=x *(x * y) \\
\Rightarrow \quad & (x *(x * y)) *(y * x)=x *(x * y) \quad(1)(u \sin g(1.7))
\end{aligned}
$$

Now,

$$
\begin{array}{rlrl}
(x * & (x *(y *(y * x))) *(x *(x * y)) & & \\
& =(x *(x *(x * y)) *(x *(y *(y * x)) & & (u \operatorname{sing}(1.7)) \\
& =(x * y) *(x *(y *(y * x)) & & (u \operatorname{sing}(1.9)) \\
& \leq(y *(y * x)) * y & (u \operatorname{sing}(1.1)) \\
& =(y * y) *(y * x) & (u \operatorname{sing}(1.7))
\end{array}
$$

Because $x, y \in M$, therefore $y * x \in M$, so $o *(y * x)=o$, so we get

$$
\begin{equation*}
(x *(x *(y *(y * x))) *(x *(x * y))=o \tag{2}
\end{equation*}
$$

Further,

$$
\begin{aligned}
& (x *(x * y)) *(x *(x *(y *(y * x))) \\
& \quad \leq(x *(y *(y * x)) *(x * y) \\
& \quad=(x *(x * y)) *(y *(y * x)) \quad(u \sin g(1.7))
\end{aligned}
$$

Because of (1.13), an implicative BCK-algebra is commutative, so $x *(x * y)=y *(y * x)$. Thus

$$
\begin{gather*}
(x *(x * y)) *(x *(x *(y *(y * x))) \leq(x *(x * y)) *(y *(y * x))=o \\
\Rightarrow(x *(x * y)) *(x *(x *(y *(y * x)))=o \tag{3}
\end{gather*}
$$

Because of (1.4), from equations (2) and (3) it follows that

$$
x *(x * y)=x *(x *(y *(y * x))
$$

Thus equation (1) becomes

$$
\begin{equation*}
(x *(x * y)) *(y * x)=x *(x *(y *(y * x)) \tag{A}
\end{equation*}
$$

Case (2): Let $x, y \in X-M$. Then for $x \in X-M \subset X, y \in X-M$, by theorem 3 , part (1),

$$
\begin{gather*}
x *(x * y)=y \\
\Rightarrow(x *(x * y)) *(y * x)=y *(y * x) \tag{4}
\end{gather*}
$$

Because of (1.12), an implicative BCK-algebra is commutative, it means X is a S_{3}-algebra with commutative BCK-part M. So by above theorem $5, X$ is a commutative BCI-algebra. Thus $y *(y * x)=$ $x *(x *(y *(y * x))$. Hence equation (4) becomes,

$$
\begin{equation*}
(x *(x * y)) *(y * x)=x *(x *(y *(y * x)) \tag{B}
\end{equation*}
$$

Case (3): Let $x \in M, y \in X-M$. Then by theorem 4, part (2),

$$
\begin{equation*}
y *(y * x)=o \tag{5}
\end{equation*}
$$

and for $x \in M \subset X, y \in X-M$ by theorem 3, part (1),

$$
\begin{equation*}
x *(x * y)=y \tag{6}
\end{equation*}
$$

Now equation (5) implies

$$
(y *(y * x)) *(x * y)=o *(x * y)
$$

Because of theorem 4,part (1), above equation becomes

$$
\begin{equation*}
(y *(y * x)) *(x * y)=y \tag{7}
\end{equation*}
$$

Now

$$
\begin{array}{rlr}
(y * & (y *(x *(x * y)))) * y \\
\quad=(y * y) *(y *(x *(x * y)) & (u \operatorname{sing}(1.7)) \tag{1.7}\\
& =o *(y *(x *(x * y)) & (u \operatorname{sing}(1.3)) \\
& =o *(y * y)=o * o=o & (8)(u \operatorname{sing} \text { equations(} 6 \text {)and }(1.3))
\end{array}
$$

Further,

$$
\begin{array}{r}
y *(y *(y *(x *(x * y))))=y *(y *(y * y)) \quad \text { (using equation (6)) } \\
=y *(y * o)=y * y=o \tag{9}
\end{array}
$$

So by above theorem $5, X$ is a commutative BCI-algebra. Thus because of (1.4), equations (8) and (9) imply

$$
y=y *(y *(x *(x * y)))
$$

Hence equation (7) becomes

$$
\begin{equation*}
(y *(y * x)) *(x * y)=y *(y *(x *(x * y)) \tag{C}
\end{equation*}
$$

Further from equation (6)

$$
\begin{equation*}
(x *(x * y)) *(y * x)=y *(y * x) \tag{10}
\end{equation*}
$$

Because of (1.12), an implicative BCK-algebra is commutative, it means that X is a S_{3}-algebra with commutative BCK-part M. So by above theorem 5, X is a commutative BCI-algebra. Thus $y *(y * x)=$ $x *(x *(y *(y * x))$ holds. Hence equation (10) becomes,

$$
\begin{equation*}
(x *(x * y)) *(y * x)=x *(x *(y *(y * x)) \tag{D}
\end{equation*}
$$

Hence from (A), (B), (C) and (D) it follows that for all $x, y \in X$,

$$
(x *(x * y)) *(y * x)=x *(x *(y *(y * x))
$$

Which shows that X is a positive implicative BCI-algebra.
From theorem 5 and theorem 6 it follows that the class of positive implicative S_{3}-algebras is contained in the class of commutative $S_{3^{-}}$ algebras.

REFERENCES

[1] Bhatti S.A., Chaudhry, M.A. and Ahmad B. (1989): On classification of BCIalgebras, Math Japonica 34, 865-876.
[2] J. Meng and X.L. Xin: Commutative BCI-algebras, Math Japonica $37(1992)$, no. 3, 569-572. 351-366.
[3] J. Meng and X.L. Xin: Positive implicative BCI-algebras, Pure and Applied Math. 9.(1993),19-22.
[4] K. Iseki and S. Tanaka: An introduction to the theory BCK-algerbas, Math Japonica 23,(1978), 1-26.
[5] K. Iseki and S. Tanaka :Ideal theory of BCK-algerbas, Math Japonica 21(1976), 351-366.
[6] K. Iseki (1980): On BCI-algebras, Math. Seminar notes, 8, 125-130.
[7] L. Tiande and X. Changchang: P-radicals in BCI-algebras, Math. Japonica, $30(1985), 511-517$.

Department of Mathematics
Queen Mary College
Lahore - Pakistan
E-mail: fhtnr2003@yahoo.com
Department of Mathematics
University of the Punjab
Lahore - Pakistan
E-mail: shabanbhatti@math.pu.edu.pk

