East Asian Math. J. 21 (2005), No. 2, pp. 163–170

A KL-PRODUCT OF FINITE BCI-ALGEBRAS

Ahmad Habil

ABSTRACT. We have proved that a finite BCI-algebra (X, *, 0) is a KL-product if and only if for any subset I of X such that $I * X \subseteq I$ the cardinality of 0 * X divides the cardinality of I.

1. Introduction

The notion of BCK-algebras was proposed by Y. Iami and K. Iséki in 1966. In the same year K. Iséki [5] introduced the notion of BCIalgebras, which are a generalization of BCK-algebras. After than many mathematical papers have been published investigating some algebraic properties of the BCK/BCI-algebras and their relationship with other universal structures including lattices and Boolean algebras.

2. Basic definitions and results

DEFINITION 2.1. A nonempty set X with a binary operation * and a distinguished element 0 is called a *BCI-algebra* if the following axioms

(i) ((x * y) * (x * z)) * (z * y) = 0, (ii) (x * (x * y)) * y = 0, (iii) x * x = 0, (iv) $x * y = y * x = 0 \longrightarrow x = y$ are satisfied for every $x, y, z \in X$.

Received August 11, 2005.

2000 Mathematics Subject Classification: 06F35, 03G25. Key words and phrases: *BCI*-algebra, *KL*-product. A. Habil

A *BCI*-algebra satisfying the identity 0 * x = 0 is called a *BCK*-algebra.

In any *BCI*-algebra we can define a natural order \leq putting

$$x \leq y \longleftrightarrow x * y = 0.$$

An element a of a *BCI*-algebra is called an *atom* if $x \leq a$ implies x = a. The set of all atoms of a *BCI*-algebra X will be denoted by L(X). It is always nonempty because it contains at least 0.

A *BCI*-algebra X satisfying the identity 0 * (0 * x) = x is called *p*semisimple. In such *BCI*-algebra we have x*(x*y) = y for all $x, y \in X$ (cf. [2]). Moreover such *BCI*-algebra is medial and can be uniquely described by some group [1]. All elements of such *BCI*-algebra are atoms [3].

LEMMA 2.2. [9] An element a of a BCI-algebra X is an atom if and only if x * (x * a) = a for every $x \in X$.

LEMMA 2.3. [9] In any BCI-algebra X we have L(X) = 0 * X.

In [8]J. Meng and X. L. Xin introduced the following notion of KL-product BCI-algebras.

DEFINITION 2.4. A *BCI*-algebra X is called a *KL*-product *BCI*-algebras, if there exists a *BCK*-algebra Y and a p-semisimple *BCI*-algebra Z such that $X \approx Y \times Z$.

THEOREM 2.5. [9] A BCI-algebra X is a KL-product if and only if for every $x \in X$ and $e \in L(X)$ the following equality is satisfied

$$x = (x \ast e) \ast (0 \ast e).$$

PROPOSITION 2.6. [3], [6] In any BCI-algebra X the following conditions are satisfied for every $x, y, z \in X$

(1) x * 0 = x, (2) x * (x * (x * y)) = x * y, (3) (x * y) * z = (x * z) * y, (4) 0 * (x * y) = (0 * x) * (0 * y), (5) $x \le y \longrightarrow x * z \le y * z$ and $z * y \le z * x$, (6) $0 * (x * y) = 0 \longleftrightarrow 0 * x = 0 * y$.

164

3. Main results

In this section we describe properties of some special subsets of a BCI-algebra X. At first we consider the subset

$$T_a = \{ x \in X | a * (a * x) = x \}.$$

Note that similar subsets are studied in [4].

LEMMA 3.1. In any BCI-algebra X for an arbitrary $a \in X$ we have $0, a \in T_a$ and $L(X) = T_0$.

Proof. Since the first condition is obvious, we prove only the second. Let $x \in T_0$. Then 0 * (0 * x) = x, i.e. $x \in 0 * X$. Thus $T_0 \subset 0 * X$.

Conversely, if $x \in 0 * X$, then x = 0 * y for some $y \in X$. Hence 0 * (0 * x) = 0 * (0 * (0 * y)) = 0 * y = x, i.e. $x \in T_0$, which implies $0 * X \subset T_0$. Therefore $T_0 = 0 * X = L(X)$.

PROPOSITION 3.2. In any BCI-algebra X the following hold:

(1) $T_a = a * X = \{a * x | x \in X\},$ (2) $T_a * a = L(X) = T_0,$ (3) $T_{a*x} \subset T_a,$ (4) $T_0 \subset T_a,$ (5) $T_a * X = T_a,$ (6) $x \in T_a \longrightarrow T_x \subset T_a,$ (7) $T_0 = T_a \longleftrightarrow a \text{ is an atom.}$

Proof. (1) For $y \in T_a$ we have y = a * (a * y), which gives $y \in a * X$. Thus $T_a \subset a * X$. Conversely, for any $y \in a * X$ there exists $x \in X$ such that y = a * x. Hence a * (a * y) = a * (a * (a * x)) = a * x = y, i.e. $y \in T_a$, whence $a * X \subset T_a$. This completes the proof of (1).

(2) For every $a \in X$ we have (a * x) * a = (a * a) * x = 0 * x, so,

$$T_a * a = \{(a * x) * a | x \in X\} = \{0 * x | x \in X\} = 0 * X = L(X) = T_0$$

(3) Let $y \in T_{a*x}$. Then

$$y = (a * x) * ((a * x) * y) = (a * x) * ((a * y) * x).$$

But

$$((a*x)*((a*y)*x))*(a*(a*y)) = ((a*x)*((a*(a*y))*((a*y)*x)) = 0.$$

So, y * (a * (a * y)) = 0. On the other hand, (a * (a * y)) * y = 0, which, together with the previous equality, implies a * (a * y) = y. Therefore $y \in T_a$.

(4) It follows from (3).

(5) Since for any $z \in T_a$ there exists $x \in X$ such that z = a * x, for $y \in X$ we have $T_{z*y} = T_{(a*x)*y} \subset T_{a*x} \subset T_a$. So, $z * y \in T_a$. Thus $T_a * X \subset T_a$. This completes the proof, because $T_a = a * X \subset T_a * X$, by just proved first condition.

(6) It is a simple consequence of previous conditions.

(7) If a is an atom, then $a \in L(X) = T_0$ implies $T_a \subset T_0$. But $T_0 \subset T_a$ by (4), so $T_0 = T_a$. The converse is obvious.

Now we consider the set

$$S_a = \{ x \in X | x * (x * a) = a \}.$$

PROPOSITION 3.3. Let X be a BCI-algebra, then for any elements $a, b \in X$ we have

a ∈ S_a,
 x ∈ S_a → S_x ⊂ S_a.
 S_a ⊂ S_b ↔ T_b ⊂ T_a,
 S_a ⊂ S_{a*x} for any x ∈ X,
 S₀ = X,
 S_a = X, if a is an atom in X.
 (X \ S_a) * X = X \ S_a, if a is not an atom.

Proof. (1) We have a * (a * a) = a * 0 = a, which gives $a \in S_a$.

(2) Consider $x \in S_a$ and $y \in S_x$. Then x * (x * a) = a and y * (y * x) = x, which imply

$$(y * (y * x)) * ((y * (y * x)) * a) = a$$

and

$$(y * (y * x)) * ((y * a) * (y * x)) = a.$$

But

$$((y * (y * x)) * ((y * a) * (y * x))) * (y * (y * a))$$

= ((y * (y * x)) * (y * (y * a))) * ((y * a) * (y * x))) = 0.

So, a * (y * (y * a)) = 0 and (y * (y * a)) * a = 0, which implies y * (y * a) = a. Thus $y \in S_a$, i.e. $S_x \subset S_a$.

166

(3) Suppose that $S_a \subset S_b$ and $x \in T_b$, then b * (b * x) = x, i.e. $b \in S_x$. Therefore $S_b \subset S_x$, and in the consequence, $S_a \subset S_x$. So, $a \in S_x$, whence $x \in T_a$. This proves the inclusion $T_b \subset T_a$.

In a similar way we can prove that $T_b \subset T_a$ implies $S_a \subset S_b$.

(4) We know that $T_{a*x} \subset T_a$, therefore $S_a \subset S_{a*x}$.

(5) Obvious.

(6) It follows from the fact that x * (x * a) = a for every $x \in X$ if and only if a is an atom.

(7) If a is not an atom, then $S_a \neq X$. So, if $x \in X \setminus S_a$, $y \in X$, and $x * y \in S_a$, then $S_{x*y} \subset S_a$. But $S_x \subset S_{x*y}$ implies $x \in S_a$, which is a contradiction. Therefore must be $x \in X \setminus S_a$.

COROLLARY 3.4. In a BCI-algebra X, the following properties are equivalent:

(1) $S_a = S_b$, (2) $T_a = T_b$, (3) $b \in S_a \cap T_a$, (4) $a \in S_b \cap T_b$.

On a *BCI*-algebra X we define a binary relation \sim putting

 $x \sim y \longleftrightarrow T_x = T_y.$

It is clear that it is an equivalence relation. By the above corollary, an equivalence class containing an element $a \in X$ coincides with the set $S_a \cap T_a$.

THEOREM 3.5. In any finite BCI-algebra the following two conditions are equivalent:

(1) (x * e) * (0 * e) = x for all $x \in X$ and $e \in 0 * X$,

(2) Card (0 * X) divides Card I for any $I \subset X$ such that $I * X \subset I$.

Proof. Consider the function $\varphi_a : S_a \cap T_a \to S_0 \cap T_0$ such that $\varphi_a(x) = a * x$.

It is well defined because for $x \in S_a \cap T_a$ we have

 $\varphi_a(x) = a * x = (x * (x * a)) * x = (x * x) * (x * a) = 0 * (x * a),$

which gives $\varphi_a(x) \in 0 * X = T_0 = X \cap T_0 = S_0 \cap T_0$.

A. Habil

If $\varphi_a(x_1) = \varphi_a(x_2)$ for some $x_1, x_2 \in S_a \cap T_a$, then $a * x_1 = a * x_2$, which implies

$$x_1 = a \ast (a \ast x_1) = a \ast (a \ast x_2) = x_2.$$

This means that φ_a is injective. Hence

$$Card (S_a \cap T_a) \leq Card (S_0 \cap T_0).$$
(1) \rightarrow (2) Let $(x * e) * (0 * e) = x$ for all $x \in X$ and $e \in 0 * X$. Then
 $y \in S_0 \cap T_0 = T_0 = 0 * X = L(X) \longrightarrow y \in L(X),$

i.e. a * (a * y) = y.

If x = a * y, then obviously $x \in T_a$. Moreover,

$$x*(x*a) = (a*y)*((a*y)*a) = (a*y)*((a*a)*y) = (a*y)*(0*y) = a,$$

which means that $x \in S_a$. In the consequence, $x \in S_a \cap T_a$. But y = a * x is equivalent to $y = \varphi_a(x)$. In this way, we have proved that φ_a is surjective. φ_a is bijective because it is injective by the first part of the theorem. Consequently

$$Card\left(S_0 \cap T_0\right) = Card\left(S_a \cap T_a\right).$$

Now let I be an arbitrary subset of X such that $I * X \subset I$. Then I is a union of separated subsets of the form $S_a \cap T_a$. Indeed, for any $a \in I$ we have $T_a = a * X \subset I * X \subset I$. But $S_a \cap T_a \subset T_a$, which implies $S_a \cap T_a \subset I$. So, $I = \bigcup_{x \in C} (S_x \cap T_x)$, where $C \subset I$. The subsets $S_x \cap T_x, x \in C$, as equivalence classes of the equivalence defined above, are obviously separated. Therefore

$$Card I = \sum_{x \in C} Card \left(S_x \cap T_x \right) = \sum_{x \in C} Card \left(S_0 \cap T_0 \right)$$
$$= \sum_{x \in C} Card \left(0 * X \right) = Card C \times Card \left(0 * X \right).$$

This proves that Card(0 * X) divides Card I.

 $(2) \to (1)$ If for all $I \subset X$ such that $I * X \subset I$ Card (0 * X) divides Card I, then for any $a \in X$ we have

$$T_a = X \cap T_a = (S_a \cup (X \setminus S_a)) \cap T_a = (S_a \cap T_a) \cup ((X \setminus S_a) \cap T_a).$$

This means that $Card T_a = Card (S_a \cap T_a) + Card ((X \setminus S_a) \cap T_a).$

If a is not an atom then $(X \setminus S_a) * X = (X \setminus S_a)$, by Proposition 3.3, and $T_a * X = T_a$, by Proposition 3.2. So,

$$((X \setminus S_a) \cap T_a) * X \subset (X \setminus S_a) \cap T_a.$$

168

From the above, according to (2), we conclude that Card(0 * X) divides $Card T_a$ and $Card((X \setminus S_a) \cap T_a$. Therefore Card(0 * X) divides

Card
$$T_a - Card((X \setminus S_a) \cap T_a) = Card(S_a \cap T_a).$$

Hence $Card(S_0 \cap T_0)$ divides $Card(S_a \cap T_a)$, because $0 * X = L(X) = T_0 = S_0 \cap T_0$ by Lemma 2.3 and Lemma 3.1. Thus

$$Card(S_0 \cap T_0) \leq Card(S_a \cap T_a).$$

But, as it was proved in the first part of this proof, $Card(S_a \cap T_a) \leq Card(S_0 \cap T_0)$. So, $Card(S_a \cap T_a) = Card(S_0 \cap T_0)$, which means that the map φ_a is surjective.

If a is an atom, then $S_a = X$, by Proposition 3.3, and $T_a = T_0$, by Proposition 3.2. Thus $S_a \cap T_a = S_0 \cap T_0$, i.e. φ_a is surjective. So, φ_a is surjective in any case.

Now let $e \in L(X) = 0 * X = T_0 = S_0 \cap T_0$. Then there exists an element $x \in (S_a \cap T_a)$ such that $\varphi_a(x) = a * x = e$. Hence a * (a * x) = a * e. But a * (a * x) = x because $x \in T_a$, whence x = a * e and $x \in S_a$. Therefore

$$a = (a * e) * ((a * e) * a) = (a * e) * ((a * a) * e) = (a * e) * (0 * e).$$

This proves (1) and completes our proof.

As a simple consequence of the above theorem and Theorem 2.5 we obtain

COROLLARY 3.6. A finite BCI-algebra is a KL-product if and only if for every $I \subset X$ such that $I * X \subset I$ Card (0 * X) divides Card I.

REFERENCES

- W. A. Dudek, On some BCI-algebras with the condition (S), Math. Japonica 31 (1986), 25-29.
- [2] W. A. Dudek, On medial BCI-algebras, Prace Naukowe WSP w Częstochowie, ser. Matematyka 1 (1987), 25-33.
- W. A. Dudek, On the axioms system for BCI-algebras, Prace Naukowe WSP w Częstochowie, Matematyka 2 (1988), 21-30.
- [4] W. A. Dudek and J. Thomys, On decompositions of BCH-algebras, Math. Japon. 35 (1990), 1131-1138.

 \Box

A. HABIL

- [5] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Academy 42 (1966), 26–29.
- [6] K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
- [7] J. Meng and X. I. Xin, Characterizations of atoms in BCI-algebras, Math. Japon. 37 (1992), 359-361.
- [8] J. Meng and X. I. Xin, A problem in BCI-algebras, Math. Japon. 38 (1993), 723-725.
- [9] S. M. Wei, G. Q. Bai, J. Meng and Y.Q. Wang, Quasi-implicative BCIalgebras, Math. Japon. 50 (1999), 227-233.

Department of Mathematics Faculty of Sciences University of Damascus, Damascus, Syria *E-mail*: mhabil@scs-net.org