A KL-PRODUCT OF FINITE BCI-ALGEBRAS

Ahmad Habil

Abstract

We have proved that a finite $B C I$-algebra $(X, *, 0)$ is a $K L$-product if and only if for any subset I of X such that $I * X \subseteq I$ the cardinality of $0 * X$ divides the cardinality of I.

1. Introduction

The notion of BCK-algebras was proposed by Y. Iami and K. Iséki in 1966. In the same year K. Iséki [5] introduced the notion of BCIalgebras, which are a generalization of BCK-algebras. After than many mathematical papers have been published investigating some algebraic properties of the $\mathrm{BCK} / \mathrm{BCI}-\mathrm{algebras}$ and their relationship with other universal structures including lattices and Boolean algebras.

2. Basic definitions and results

Definition 2.1. A nonempty set X with a binary operation * and a distinguished element 0 is called a BCI-alyebra if the following axioms
(i) $((x * y) *(x * z)) *(z * y)=0$,
(ii) $(x *(x * y)) * y=0$,
(iii) $x * x=0$,
(iv) $x * y=y * x=0 \longrightarrow x=y$
are satisfied for every $x, y, z \in X$.
Received August 11, 2005.
2000 Mathematics Subject Classification: 06F35, 03G25.
Key words and phrases: $B C I$-algebra, $K L$-product.

A $B C I$-algebra satisfying the identity $0 * x=0$ is called a $B C K-$ algebra.

In any $B C I$-algebra we can define a natural order \leq putting

$$
x \leq y \longleftrightarrow x * y=0
$$

An element a of a BCI-algebra is called an atom if $x \leq a$ implies $x=a$. The set of all atoms of a $B C I$-algebra X will be denoted by $L(X)$. It is always nonempty because it contains at least 0 .

A BCI-algebra X satisfying the identity $0 *(0 * x)=x$ is called p semisimple. In such $B C I$-algebra we have $x *(x * y)=y$ for all $x, y \in X$ (cf. [2]). Moreover such BCI-algebra is medial and can be uniquely described by some group [1]. All elements of such BCI-algebra are atoms [3].

Lemma 2.2. [9] An element a of a $B C I$-algebra X is an atom if and only if $x *(x * a)=a$ for every $x \in X$.

Lemma 2.3. [9] In any $B C I$-algebra X we have $L(X)=0 * X$.
In [8]J. Meng and X. L. Xin introduced the following notion of $K L$-product $B C I$-algebras.

Definition 2.4. A $B C I$-algebra X is called a $K L$-product $B C I$ algebras, if there exists a $B C K$-algebra Y and a p-semisimple $B C I$ algebra Z such that $X \approx Y \times Z$.

Theorem 2.5. [9] A BCI-algebra X is a $K L$-product if and only if for every $x \in X$ and $e \in L(X)$ the following equality is satisfied

$$
x=(x * e) *(0 * e) .
$$

Proposition 2.6. [3], [6] In any $B C I$-algebra X the following conditions are satisfied for every $x, y, z \in X$
(1) $x * 0=x$,
(2) $x *(x *(x * y))=x * y$,
(3) $(x * y) * z=(x * z) * y$,
(4) $0 *(x * y)=(0 * x) *(0 * y)$,
(5) $x \leq y \longrightarrow x * z \leq y * z$ and $z * y \leq z * x$,
(6) $0 *(x * y)=0 \longleftrightarrow 0 * x=0 * y$.

3. Main results

In this section we describe properties of some special subsets of a $B C I$-algebra X. At first we consider the subset

$$
T_{a}=\{x \in X \mid a *(a * x)=x\}
$$

Note that similar subsets are studied in [4].
Lemma 3.1. In any $B C I$-algebra X for an arbitrary $a \in X$ we have $0, a \in T_{a}$ and $L(X)=T_{0}$.

Proof. Since the first condition is obvious, we prove only the second. Let $x \in T_{0}$. Then $0 *(0 * x)=x$, i.e. $x \in 0 * X$. Thus $T_{0} \subset 0 * X$.

Conversely, if $x \in 0 * X$, then $x=0 * y$ for some $y \in X$. Hence $0 *(0 * x)=0 *(0 *(0 * y))=0 * y=x$, i.e. $x \in T_{0}$, which implies $0 * X \subset T_{0}$. Therefore $T_{0}=0 * X=L(X)$.

Proposition 3.2. In any BCI-algebra X the following hold:
(1) $T_{a}=a * X=\{a * x \mid x \in X\}$,
(2) $T_{a} * a=L(X)=T_{0}$,
(3) $T_{a * *} \subset T_{a}$,
(4) $T_{0} \subset T_{a}$,
(5) $T_{a} * X=T_{a}$,
(6) $x \in T_{a} \longrightarrow T_{x} \subset T_{a}$,
(7) $T_{0}=T_{a} \longleftrightarrow a$ is an atom.

Proof. (1) For $y \in T_{a}$ we have $y=a *(a * y)$, which gives $y \in a * X$. Thus $T_{a} \subset a * X$. Conversely, for any $y \in a * X$ there exists $x \in X$ such that $y=a * x$. Hence $a *(a * y)=a *(a *(a * x))=a * x=y$, i.e. $y \in T_{a}$, whence $a * X \subset T_{a}$. This completes the proof of (1).
(2) For every $a \in X$ we have $(a * x) * a=(a * a) * x=0 * x$, so, $T_{a} * a=\{(a * x) * a \mid x \in X\}=\{0 * x \mid x \in X\}=0 * X=L(X)=T_{0}$.
(3) Let $y \in T_{a * x}$. Then

$$
y=(a * x) *((a * x) * y)=(a * x) *((a * y) * x)
$$

But

$$
((a * x) *((a * y) * x)) *(a *(a * y))=((a * x) *((a *(a * y)) *((a * y) * x)=0 .
$$

So, $y *(a *(a * y))=0$. On the other hand, $(a *(a * y)) * y=0$, which, together with the previous equality, implies $a *(a * y)=y$. Therefore $y \in T_{a}$.
(4) It follows from (3).
(5) Since for any $z \in T_{a}$ there exists $x \in X$ such that $z=a * x$, for $y \in X$ we have $T_{z * y}=T_{(a * x) * y} \subset T_{a * x} \subset T_{a}$. So, $z * y \in T_{a}$. Thus $T_{a} * X \subset T_{a}$. This completes the proof, because $T_{a}=a * X \subset T_{a} * X$, by just proved first condition.
(6) It is a simple consequence of previous conditions.
(7) If a is an atom, then $a \in L(X)=T_{0}$ implies $T_{a} \subset T_{0}$. But $T_{0} \subset T_{a}$ by (4), so $T_{0}=T_{a}$. The converse is obvious.

Now we consider the set

$$
S_{a}=\{x \in X \mid x *(x * a)=a\} .
$$

Proposition 3.3. Let X be a $B C I$-algebra, then for any elements $a, b \in X$ we have
(1) $a \in S_{a}$,
(2) $x \in S_{a} \longrightarrow S_{x} \subset S_{a}$.
(3) $S_{a} \subset S_{b} \longleftrightarrow T_{b} \subset T_{a}$,
(4) $S_{a} \subset S_{a * x}$ for any $x \in X$,
(5) $S_{0}=X$,
(6) $S_{a}=X$, if a is an atom in X.
(7) $\left(X \backslash S_{a}\right) * X=X \backslash S_{a}$, if a is not an atom.

Proof. (1) We have $a *(a * a)=a * 0=a$, which gives $a \in S_{a}$.
(2) Consider $x \in S_{a}$ and $y \in S_{x}$. Then $x *(x * a)=a$ and $y *(y * x)=$ x, which imply

$$
(y *(y * x)) *((y *(y * x)) * a)=a
$$

and

$$
(y *(y * x)) *((y * a) *(y * x))=a .
$$

But

$$
\begin{aligned}
& ((y *(y * x)) *((y * a) *(y * x))) *(y *(y * a)) \\
& =((y *(y * x)) *(y *(y * a))) *((y * a) *(y * x)))=0 .
\end{aligned}
$$

So, $a *(y *(y * a))=0$ and $(y *(y * a)) * a=0$, which implies $y *(y * a)=a$. Thus $y \in S_{a}$, i.e. $S_{x} \subset S_{a}$.
(3) Suppose that $S_{a} \subset S_{b}$ and $x \in T_{b}$, then $b *(b * x)=x$, i.e. $b \in S_{x}$. Therefore $S_{b} \subset S_{x}$, and in the consequence, $S_{a} \subset S_{x}$. So, $a \in S_{x}$, whence $x \in T_{a}$. This proves the inclusion $T_{b} \subset T_{a}$.

In a similar way we can prove that $T_{b} \subset T_{a}$ implies $S_{a} \subset S_{b}$.
(4) We know that $T_{a * x} \subset T_{a}$, therefore $S_{a} \subset S_{a * x}$.
(5) Obvious.
(6) It follows from the fact that $x *(x * a)=a$ for every $x \in X$ if and only if a is an atom.
(7) If a is not an atom, then $S_{a} \neq X$. So, if $x \in X \backslash S_{a}, y \in X$, and $x * y \in S_{a}$, then $S_{x * y} \subset S_{a}$. But $S_{x} \subset S_{x * y}$ implies $x \in S_{a}$, which is a contradiction. Therefore must be $x \in X \backslash S_{a}$.

Corollary 3.4. In a $B C I$-algebra X, the following properties are equivalent:
(1) $S_{a}=S_{b}$,
(2) $T_{a}=T_{b}$,
(3) $b \in S_{a} \cap T_{a}$,
(4) $a \in S_{b} \cap T_{b}$.

On a $B C I$-algebra X we define a binary relation \sim putting

$$
x \sim y \longleftrightarrow T_{x}=T_{y} .
$$

It is clear that it is an equivalence relation. By the above corollary, an equivalence class containing an element $a \in X$ coincides with the set $S_{a} \cap T_{a}$.

TheOrem 3.5. In any finite BCI-algebra the following two conditions are equivalent:
(1) $(x * e) *(0 * e)=x$ for all $x \in X$ and $e \in 0 * X$,
(2) Card $(0 * X)$ divides Card I for any $I \subset X$ such that $I * X \subset I$.

Proof. Consider the function $\varphi_{a}: S_{a} \cap T_{a} \rightarrow S_{0} \cap T_{0}$ such that $\varphi_{a}(x)=a * x$.

It is well defined because for $x \in S_{a} \cap T_{a}$ we have

$$
\varphi_{a}(x)=a * x=(x *(x * a)) * x=(x * x) *(x * a)=0 *(x * a)
$$

which gives $\varphi_{a}(x) \in 0 * X=T_{0}=X \cap T_{0}=S_{0} \cap T_{0}$.

If $\varphi_{a}\left(x_{1}\right)=\varphi_{a}\left(x_{2}\right)$ for some $x_{1}, x_{2} \in S_{a} \cap T_{a}$, then $a * x_{1}=a * x_{2}$, which implies

$$
x_{1}=a *\left(a * x_{1}\right)=a *\left(a * x_{2}\right)=x_{2} .
$$

This means that φ_{a} is injective. Hence

$$
\operatorname{Card}\left(S_{a} \cap T_{a}\right) \leq \operatorname{Card}\left(S_{0} \cap T_{0}\right)
$$

$(1) \rightarrow(2)$ Let $(x * e) *(0 * e)=x$ for all $x \in X$ and $e \in 0 * X$. Then

$$
y \in S_{0} \cap T_{0}=T_{0}=0 * X=L(X) \longrightarrow y \in L(X)
$$

i.e. $a *(a * y)=y$.

If $x=a * y$, then obviously $x \in T_{a}$. Moreover,
$x *(x * a)=(a * y) *((a * y) * a)=(a * y) *((a * a) * y)=(a * y) *(0 * y)=a$, which means that $x \in S_{a}$. In the consequence, $x \in S_{a} \cap T_{a}$. But $y=a * x$ is equivalent to $y=\varphi_{a}(x)$. In this way, we have proved that φ_{a} is surjective. φ_{a} is bijective because it is injective by the first part of the theorem. Consequently

$$
\operatorname{Card}\left(S_{0} \cap T_{0}\right)=\operatorname{Card}\left(S_{a} \cap T_{a}\right)
$$

Now let I be an arbitrary subset of X such that $I * X \subset I$. Then I is a union of separated subsets of the form $S_{a} \cap T_{a}$. Indeed, for any $a \in I$ we have $T_{a}=a * X \subset I * X \subset I$. But $S_{a} \cap T_{a} \subset T_{a}$, which implies $S_{a} \cap T_{a} \subset I$. So, $I=\cup_{x \in C}\left(S_{x} \cap T_{x}\right)$, where $C \subset I$. The subsets $S_{x} \cap T_{x}, x \in C$, as equivalence classes of the equivalence defined above, are obviously separated. Therefore

$$
\begin{aligned}
\operatorname{CardI} & =\sum_{x \in C} \operatorname{Card}\left(S_{x} \cap T_{x}\right)=\sum_{x \in C} \operatorname{Card}\left(S_{0} \cap T_{0}\right) \\
& =\sum_{x \in C} \operatorname{Card}(0 * X)=\operatorname{CardC} \times \operatorname{Card}(0 * X)
\end{aligned}
$$

This proves that $\operatorname{Card}(0 * X)$ divides Card I.
(2) \rightarrow (1) If for all $I \subset X$ such that $I * X \subset I \operatorname{Card}(0 * X)$ divides Card I, then for any $a \in X$ we have

$$
T_{a}=X \cap T_{a}=\left(S_{a} \cup\left(X \backslash S_{a}\right)\right) \cap T_{a}=\left(S_{a} \cap T_{a}\right) \cup\left(\left(X \backslash S_{a}\right) \cap T_{a}\right)
$$

This means that $\operatorname{Card} T_{a}=\operatorname{Card}\left(S_{a} \cap T_{a}\right)+\operatorname{Card}\left(\left(X \backslash S_{a}\right) \cap T_{a}\right)$.
If a is not an atom then $\left(X \backslash S_{a}\right) * X=\left(X \backslash S_{a}\right)$, by Proposition 3.3, and $T_{a} * X=T_{a}$, by Proposition 3.2. So,

$$
\left(\left(X \backslash S_{a}\right) \cap T_{a}\right) * X \subset\left(X \backslash S_{a}\right) \cap T_{a}
$$

From the above, according to (2), we conclude that $\operatorname{Card}(0 * X)$ divides $\operatorname{Card} T_{a}$ and $\operatorname{Card}\left(\left(X \backslash S_{a}\right) \cap T_{a}\right.$. Therefore $\operatorname{Card}(0 * X)$ divides

$$
\operatorname{Card} T_{a}-\operatorname{Card}\left(\left(X \backslash S_{a}\right) \cap T_{a}\right)=\operatorname{Card}\left(S_{a} \cap T_{a}\right)
$$

Hence $\operatorname{Card}\left(S_{0} \cap T_{0}\right)$ divides $\operatorname{Card}\left(S_{a} \cap T_{a}\right)$, because $0 * X=L(X)=$ $T_{0}=S_{0} \cap T_{0}$ by Lemma 2.3 and Lemma 3.1. Thus

$$
\operatorname{Card}\left(S_{0} \cap T_{0}\right) \leq \operatorname{Card}\left(S_{a} \cap T_{a}\right)
$$

But, as it was proved in the first part of this proof, $\operatorname{Card}\left(S_{a} \cap T_{a}\right) \leq$ $\operatorname{Card}\left(S_{0} \cap T_{0}\right)$. So, $\operatorname{Card}\left(S_{a} \cap T_{a}\right)=\operatorname{Card}\left(S_{0} \cap T_{0}\right)$, which means that the map φ_{a} is surjective.

If a is an atom, then $S_{a}=X$, by Proposition 3.3, and $T_{a}=T_{0}$, by Proposition 3.2. Thus $S_{a} \cap T_{a}=S_{0} \cap T_{0}$, i.e. φ_{a} is surjective. So, φ_{a} is surjective in any case.

Now let $e \in L(X)=0 * X=T_{0}=S_{0} \cap T_{0}$. Then there exists an element $x \in\left(S_{a} \cap T_{a}\right)$ such that $\varphi_{a}(x)=a * x=e$. Hence $a *(a * x)=$ $a * e$. But $a *(a * x)=x$ because $x \in T_{a}$, whence $x=a * e$ and $x \in S_{a}$. Therefore

$$
a=(a * e) *((a * e) * a)=(a * e) *((a * a) * e)=(a * e) *(0 * e) .
$$

This proves (1) and completes our proof.
As a simple consequence of the above theorem and Theorem 2.5 we obtain

Corollary 3.6. A finite BCI-algebra is a $K L$-product if and only if for every $I \subset X$ such that $I * X \subset I \operatorname{Card}(0 * X)$ divides Card I.

REFERENCES

[1] W. A. Dudek, On some BCI-algebras with the condetion (S), Math. Japonica 31 (1986), 25-29.
[2] W. A. Dudek, On medal BCI-algebras, Prace Naukowe WSP w Czesstochowie, ser. Matematyka 1 (1987), 25-33.
[3] W. A. Dudek, On the axioms sysyem for BCI-algebras, Prace Naukowe WSP w Czestochowie, Matematyka 2 (1988), 21-30.
[4] W. A. Dudek and J. Thomys, On decompositions of $B C H$-algebras, Math. Japon. 35 (1990), 1131-1138.
[5] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Academy 42 (1966), 26-29.
[6] K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
[7] J. Meng and X. I. Xin, Characterizations of atoms in BCI-algebras, Math. Japon. 37 (1992), 359-361.
[8] J. Meng and X. I. Xin, A problem in BCI-algebras, Math. Japon. 38 (1993), 723-725.
[9] S. M. Wei, G. Q. Bai, J. Meng and Y.Q. Wang, Quasi-implicative BCIalgebras, Math. Japon. 50 (1999), 227-233.

Department of Mathematics
Faculty of Sciences
University of Damascus,
Damascus, Syria
E-mail: mhabil@scs-net.org

