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A KL-PRODUCT OF FINITE BCI-ALGEBRAS

Ahmad Habil

Abstract. We have proved that a finite BCI-algebra (X, *, 0) 
is a KL-product if and only if for any subset I of X such that 
I * X C I the cardinality of 0 * X divides the cardinality of I.

1. Introduction

The notion of BCK-algebras was proposed by Y. lami and K. Iseki 

in 1966. In the same year K. Iseki [5] introduced the notion of BCI- 

algebras, which are a generalization of BCK-algebras. After than 

many mathematical papers have been published investigating some 

algebraic properties of the BCK/BCI-algebras and their relationship 

with other universal structures including lattices and Boolean alge­

bras.

2. Basic definitions and results

Definition 2.1. A nonempty set X with a binary operation * 

and a distinguished element 0 is called a BCI-algebra if the following 

axioms

(i) ((x * y) * (x * z)) * (z * y) = 0,

(ii) (x * (x * y)) * y = 0,

(iii) x * x = 0,

(iv) x * y = y * x = 0 ——> x = y

are satisfied for every x, y, z € X.
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A BCI-algebra satisfying the identity 0 * x = 0 is called a BCK- 

algebra.

In any BCI-algebra we can define a natural order < putting

x < y <——> x * y = 0.

An element a of a BCI-algebra is called an atom if x < a implies 

x = a. The set of all atoms of a BCI-algebra X will be denoted by 

L(X). It is always nonempty because it contains at least 0.

A BCI-algebra X satisfying the identity 0 * (0 * x) = x is called p- 

semisimple. In such BCI-algebra we have x* (x*y) = y for all x, y 6 X 
(cf. [2]). Moreover such BCI-algebra is medial and can be uniquely 

described by some group [1]. All elements of such BCI-algebra are 

atoms [3].

Lemma 2.2. [9] An element a of a BCI-algebra X is an atom if 
and only if x * (x * a) = a for every x 6 X.

Lemma 2.3. [9] In any BCI-algebra X we have L(X) = 0 * X.

In [8]J. Meng and X. L. Xin introduced the following notion of 

KL-product BCI-algebras.

Definition 2.4. A BCI-algebra X is called a KL-product BCI- 

algebras, if there exists a BCK-algebra Y and a p-semisimple BCI- 

algebra Z such that X * Y x Z.

Theorem 2.5. [9] A BCI-algebra X is a KL-product if and only 
if for every x 6 X and e 6 L(X) the following equality is satisfied

x = (x * e) * (0 * e).

Proposition 2.6. [3], [6] In any BCI-algebra X the following con­
ditions are satisfied for every x, y, z 6 X

(1) x * 0 = x,
(2) x * (x * (x * y)) = x * y,
(3) (x * y) * z = (x * z) * y,
(4) 0 * (x * y) = (0 * x) * (0 * y),
(5) x < y ——> x * z < y * z and z * y < z * x,
(6) 0 * (x * y) = 0 <----- > 0 * x = 0 * y.
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3. Main results

In this section we describe properties of some special subsets of a 

BCI-algebra X. At first we consider the subset

Ta = {x E X\a * (a * x) = x}.

Note that similar subsets are studied in [4].

Lemma 3.1. In any BCI-algebra X for an arbitrary a E X we have 
0,a E Ta and L(X) = To.

Proof. Since the first condition is obvious, we prove only the second. 

Let x E T0. Then 0 * (0 * x) = x, i.e. x E 0 * X. Thus To C 0 * X.

Conversely, if x E 0 * X, then x = 0 * y for some y E X. Hence 

0 * (0 * x) = 0 * (0 * (0 * y)) = 0 * y = x, i.e. x E To, which implies 

0 * X C To. Therefore To = 0 * X = L(X). 口

Proposition 3.2. In any BCI-algebra X the following hold:

(1) Ta = a * X = {a * x\x E X},
(2) Ta * a = L(X )= To,
(3) Ta*x C Ta,
(4) To C Ta,
(5) Ta * X = Ta,
(6) x E Ta 一 Tx C Ta,
(7) To = Ta 七——> a is an atom.

Proof. (1) For y E T, we have y = a * (a * y), which gives y E a * X. 

Thus Ta C a * X . Conversely, for any y E a * X there exists x E X 
such that y = a * x. Hence a * (a * y) = a * (a * (a * x)) = a * x = y, 

i.e. y E Ta, whence a * X C Ta. This completes the proof of (1).

(2) For every a E X we have (a * x) * a = (a * a) * x = 0 * x, so,

Ta * a = {(a * x) * a\x E X} = {0 * x\x E X} = 0 * X = L(X) = To.

(3) Let y E 7云.Then

But

((a*x) * ((a*y) *x)) * (a* (a*y)) = ((a*x) * ((a* (a*y)) * ((a*y) *x) = 0. 
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So, y * (a * (a * y)) = 0. On the other hand, (a * (a * y)) * y = 0, which, 

together with the previous equality, implies a * (a * y) = y. Therefore 

y G Ta.

(4) It follows from (3).

(5) Since for any z G T, there exists x G X such that z = a * x, 

for y G X we have 匸典=TgE C Ta^x C Ta. So, z * y G Ta. Thus 

Ta * X C Ta. This completes the proof, because Ta = a * X C Ta * X, 

by just proved first condition.

(6) It is a simple consequence of previous conditions.

(7) If a is an atom, then a G L(X) = To implies Ta C T0. But

To C Ta by (4), so To = Ta. The converse is obvious. □

Now we consider the set

Sa = {x G X|x * (x * a) = a}.

Proposition 3.3. Let X be a BCI-algebra, then for any elements 
a, b G X we have

⑴ a G Sa,
⑵ x G Sa  > Sx C Sa.
(3) Sa C Sb <----- > Tb C Ta,
(4) Sa C Sa^x for any x G X,
(5) So = X,
(6) Sa = X, if a is an atom in X.
(7) (X \ Sa) * X = X \ Sa, if a is not an atom.

Proof. (1) We have a * (a * a) = a * 0 = a, which gives a G Sa.

(2) Consider x G Sa and y G Sx. Then x* (x* a) = a and y * (y *x)= 

x, which imply

(y * (y * x)) * ((y * (y * x)) * a) = a

and

(y * (y * x)) * ((y * a) * (y * x)) = a.

But

((y * (y *x)) * ((y *a) * (y *x))) * (y * (y *a))

=((y * (y *x)) * (y * (y *a))) * ((y *a) * (y *x))) = 0-
So, a * (y * (y * a)) = 0 and (y * (y * a)) * a = 0, which implies

y * (y * a) = a. Thus y G Sa , i.e. Sx C Sa .
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i.e.

So,

,*x -

(3) Suppose that Sa C Sb and x G Tb, then b * (b * x) = x, 

b G Sx. Therefore Sb C Sx, and in the consequence, Sa C Sx. 

a G Sx, whence x G Ta. This proves the inclusion Tb C Ta.

In a similar way we can prove that Tb C Ta implies Sa C Sb .

(4) We know that 7云 C Ta, therefore Sa C Sa：

(5) Obvious.

(6) It follows from the fact that x * (x * a) = a for every x G X if 
and only if a is an atom.

(7) If a is not an atom, then Sa = X. So, if x G X \ Sa, y G X, and 

x * y G Sa, then Sx*y C Sa. But Sx C Sx*y implies x G Sa, which is a 

contradiction. Therefore must be x G X \ Sa .

Corollary 3.4. In a BCI-algebra X, the following properties are 
equivalent:

(1) & = Sb,
(2) Ta = Tb,
(3) b G Sa n Ta,

(4) a G Sb n Tb.

On a BCI-algebra X we define a binary relation 〜putting

x 〜y 七 > Tx = Ty -

It is clear that it is an equivalence relation. By the above corollary, 

an equivalence class containing an element a G X coincides with the 

set Sa n Ta .

Theorem 3.5. In any finite BCI-algebra the following two condi­
tions are equivalent:

(1) (x * e) * (0 * e) = x for all x G X and e G 0 * X,
(2) Card (0 * X) divides Card I for any I C X such that I * X C I.

Proof. Consider the function 寸戏:Sa n Ta — So n To such that 

9a(x) = a * x.

It is well defined because for x G Sa n Ta we have

9a(x) = a * x = (x * (x * a)) * x = (x * x) * (x * a) = 0 * (x * a), 

which gives 為(x) G 0 * X = To = X n To = So n To.
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If 9a(xi) = 9a(x2)for some Xi,X2 6 Sa A Ta, then a * xi = a * X2, 

which implies

xi = a * (a * xi) = a * (a * X2) = X2.

This means that 寸戏 is injective. Hence

Card (Sa A Ta) < Card (So A T0).

(1) — (2) Let (x * e) * (0 * e) = x for all x 6 X and e 6 0 * X. Then

y 6 So A To = To = 0 * X = L(X) 一 y 6 L(X),

i.e. a * (a * y) = y.

If x = a * y, then obviously x 6 Ta. Moreover,

x* (x* a) = (a*y) * ((a*y) *a) = (a*y) * ((a* a) *y) = (a*y) * (0 *y) = a, 

which means that x 6 Sa . In the consequence, x 6 Sa A Ta . But 

y = a * x is equivalent to y = 9a(x). In this way, we have proved that 

寸戏 is surjective. 為 is bijective because it is injective by the first part 

of the theorem. Consequently

Card (So A T0) = Card (Sa A T"

Now let I be an arbitrary subset of X such that I * X C I. Then 

I is a union of separated subsets of the form Sa A Ta. Indeed, for any 

a 6 I we have Ta = a * X C I * X C I. But Sa A Ta C Ta , which 

implies Sa A Ta C I. So, I = U*c(Sx A Tx), where C C I. The subsets 

Sx A Tx, x 6 C, as equivalence classes of the equivalence defined above, 

are obviously separated. Therefore

CardI = £xec Card (Sx A Tx) = Exec Card (So A To)

=^2xec Card (0 * X) = Card C x Card (0 * X).

This proves that Card (0 * X) divides Card I.

(2) — (1) If for all I C X such that I * X C I Card (0 * X) divides 

Card I , then for any a 6 X we have

Ta = X A Ta =(Sa U (X \ Sa)) A Ta = (Sa A Ta) U ((X \ Sa) A Ta).

This means that CardTa = Card (Sa A Ta) + Card ((X \ Sa) A Ta).

If a is not an atom then (X \ Sa) * X = (X \ Sa), by Proposition 

3.3, and Ta * X = Ta, by Proposition 3.2. So,

((X \ Sa) A Ta) * X C (X \ Sa) A T®



A KL-PRODUCT OF FINITE BCI-ALGEBRAS 169

From the above, according to (2), we conclude that Card (0 * X) 
divides Card Ta and Card ((X \ Sa) A Ta. Therefore Card (0 * X) 

divides

Card Ta - Card ((X \ Sa) A Ta) = Card (Sa A Ta).

Hence Card (So A To) divides Card (Sa A Ta), because 0 * X = L(X)= 

To = So A To by Lemma 2.3 and Lemma 3.1. Thus

Card (So A 舄)< Card (Sa A Ta).

But, as it was proved in the first part of this proof, Card (Sa A Ta) < 
Card (So A To). So, Card (Sa A Ta) = Card (So A To), which means 

that the map 再 is surjective.

If a is an atom, then Sa = X, by Proposition 3.3, and Ta = To, by 

Proposition 3.2. Thus Sa A Ta = So A To, i.e. 再 is surjective. So, 有 

is surjective in any case.

Now let e E L(X) = 0 * X = To = So A To. Then there exists an 

element x E (Sa A Ta) such that 9a(x) = a * x = e. Hence a * (a * x)= 

a * e. But a * (a * x) = x because x E Ta, whence x = a * e and x E Sa. 

Therefore

a = (a * e) * ((a * e) * a) = (a * e) * ((a * a) * e) = (a * e) * (0 * e).

This proves (1) and completes our proof.

As a simple consequence of the above theorem and Theorem 2.5 we 

obtain

Corollary 3.6. A finite BCI-algebra is a KL-product if and only 
if for every I C X such that I * X C I Card (0 * X) divides Card I.
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