PURITY OF GENERALIZED INVERSE POLYNOMIAL MODULES

SANGWON PARK AND EUNHA CHO

ABSTRACT. In this paper we show that we can extend the purity extension properties of left *R*-modules to the various generalized inverse polynomial modules.

1. Introduction

Let M be a left R-module, then the inverse polynomial $M[x^{-1}]$ can be defined as a left R[x]-module and we know that the polynomial module M[x] and the inverse polynomial module $M[x^{-1}]$ are not isomorphic as left R[x]-modules([1], [3], [5]). Let S be a submonoid of the natural number \mathbb{N} , then we can generalized the definition of inverse polynomial module and define $M[x^{-s}]$ as a left $R[x^{s}]$ -module([6]). In this paper we prove the purity extension properties of various generalized inverse polynomial modules.

DEFINITION 1.1. ([4]) Let R be a ring and M be a left R-module, then $M[x^{-1}]$ is a left R[x]-module by

$$x(m_0 + m_1x^{-1} + \dots + m_nx^{-n}) = m_1 + m_2x^{-1} + \dots + m_nx^{-n+1}$$

and

$$r(m_0 + m_1 x^{-1} + \dots + m_n x^{-n}) = rm_0 + rm_1 x^{-1} + \dots + rm_n x^{-n}$$

where $r \in R$. We call $M[x^{-1}]$ an inverse polynomial module.

Received April 15, 2005.

²⁰⁰⁰ Mathematics Subject Classification: Primary 16E30; Secondary 13C11, 16D80.

Key words and phrases: module, pure submodule, generalized inverse polynomial module.

This paper was supported by Dong-A University Research Fund, in 2002.

We consider the natural number \mathbb{N} contains 0.

DEFINITION 1.2. ([7]) Let R be a ring and M be a left R-module, and $S = \{0, k_1, k_2, \dots\}$ be a submonoid of \mathbb{N} . Then $M[x^{-s}]$ is a left $R[x^s]$ -module defined by

$$x^{k_i}(m_0 + m_1x^{-k_1} + m_2x^{-k_2} + \dots + m_nx^{-k_n})$$

= $m_1x^{-k_1+k_i} + m_2x^{-k_2+k_i} + \dots + m_nx^{-k_n+k_i}$

and

$$r(m_0 + m_1 x^{-k_1} + m_2 x^{-k_2} + \dots + m_n x^{-k_n})$$

= $rm_0 + rm_1 x^{-k_1} + rm_2 x^{-k_2} + \dots + rm_n x^{-k_n},$

where

$$x^{-k_j+k_i} = \begin{cases} x^{-k_j+k_i} & \text{if} & k_j-k_i \in S \\ 0 & \text{if} & k_j-k_i \notin S. \end{cases}$$

For example, if $S = \{0, 2, 3, 4, \dots\}$, then $m_0 + m_2 x^{-2} + m_3 x^{-3} + \dots + m_i x^{-i} \in M[x^{-s}]$ and if $S = \{0, 1, 2, 3, 4, \dots\}$, then $M[x^{-s}] = M[x^{-1}]$. Similarly, we can define $M[[x^{-s}]]$, $M[x^s, x^{-s}]$, $M[[x^s, x^{-s}]]$ as a left $R[x^s]$ -modules.

DEFINITION 1.3. ([2]) Let S be a submonoid of \mathbb{N} and S contains all n in \mathbb{N} lager than some n_0 in \mathbb{N} . Then the **conductor** of S is the largest element of \mathbb{Z} not in S (where \mathbb{Z} is the set of all integers).

EXAMPLE 1.4. Let $S = \{0, 3, 4, 5, \dots\}$, then the conductor of S is 2.

Let $S \subset \mathbb{N}$ be a submonoid where we assume that for some $n_0 \in \mathbb{N}$, all $n \geq n_0$ are in S. S is symmetric if and only if it has a conductor c, such that the function $n \mapsto c - n$ from \mathbb{Z} to \mathbb{Z} maps S bijectively to its complement in \mathbb{Z} .

EXAMPLE 1.5. $S = \{0, 2, 3, 4, 5, \dots\}$ is a symmetric submonoid with the conductor 1.

EXAMPLE 1.6. $S = \{0, 3, 4, 5, 6, \dots\}$ is a nonsymmetric submonoid with the conductor 2.

THEOREM 1.7. ([6]) Let M be a left R-module and S be a symmetric submonoid. Then there is an exact sequence

$$0 \to M[x^s] \to M[x, x^{-1}] \to M[x^{-s}] \to 0$$

as $R[x^s]$ -modules.

An exact sequence of left R-modules

$$0 \to A^{'} \xrightarrow{\lambda} A \to A^{''} \to 0$$

is **pure exact** if, for every right R-module B, we have exactness of

$$0 \longrightarrow B \oslash A' \xrightarrow{1 \oslash \lambda} B \oslash A \longrightarrow B \oslash A'' \longrightarrow 0.$$

We say that $\lambda A'$ is a **pure submodule** of A in this case([9]).

Example 1.8. A split exact sequence $0 \to A' \xrightarrow{f} A \to A'' \to 0$ is a pure exact.

Let M be a R-module, then the character module M^+ of M is defined by $Hom_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$.

Let $M,\ N$ be left R-modules. Then $f:N^+\longrightarrow M^+$ having a section means that there exist $s:M^+\longrightarrow N^+$ such that $f\circ s=id_{M^+}.$

THEOREM 1.9. ([8]) $M \subset N$ is pure as left R-modules if and only if $f: N^+ \to M^+$ has a section.

THEOREM 1.10. If $M \subset N$ is pure as left R-modules, then r divides a in N implies r divides a in M.

Proof. Let $M \subset N$ be pure and $I = (r), r \in R$, then we have

$$0 \to R/I \otimes_R M \to R/I \otimes_R N.$$

But since $R/I \oslash_R M \cong M/rM$ and $R/I \oslash_R N \cong N/rN$,

$$0 \to M/rM \to N/rN$$
.

Therefore, $M \subset N$ is pure implies that if r divides a in N, then r divides a in M.

EXAMPLE 1.11. $M[x] \subset M[x, x^{-1}]$ is not pure as a left R[x]-module.

Proof. Let $m \in M$, then since $x(mx^{-1}) = m$. But x does not divide m in M[x]. Hence, $M \subset M[x,x^{-1}]$ is not pure as a left R[x]-module.

2. Purity Extensions

THEOREM 2.1. Let M, N be left R-modules and S be a submonoid of N. Then

$$\operatorname{Hom}_{\mathbb{Z}}(M[x^s], N) \cong \operatorname{Hom}_{\mathbb{Z}}(M, N)[[x^{-s}]]$$

as left $R[x^s]$ -modules.

Proof. Let $S = \{0, k_1, k_2, \cdots\}$. Let $\phi \in Hom_{\mathbb{Z}}(M[x^s], \mathbb{N})$ and define $d_{Mx^{k_i}}: M \to Mx^{k_i}$ by $d_{Mx^{k_i}}(m) = mx^{k_i}$ and $\phi|_{Mx^{k_i}}: Mx^{k_i} \to \mathbb{N}$. Let $f_{k_i} = \phi|_{Mx^{k_i}} \circ d_{Mx^{k_i}}$ for each $x^{k_i} = 0, k_1, k_2, k_3, \cdots$. Define

$$\psi: Hom_{\mathbb{Z}}(M[x^s],\ N) \to Hom_{\mathbb{Z}}(M,\ N)[[x^{-s}]]$$

by $\psi(\phi) = f_0 + f_{k_1} x^{-k_1} + f_{k_2} x^{-k_2} + \cdots$. Then easily ψ is a well-defined group homomorphism. And $ker(\psi) = 0$, so that ψ is injective. Let

$$f_0 + f_{k_1}x^{-k_1} + f_{k_2}x^{-k_2} + \dots \in Hom_{\mathbb{Z}}(M, N)[[x^{-s}]].$$

Choose $\phi \in Hom_{\mathbb{Z}}(M[x^s], N)$ such that

$$\phi(m_0 + m_{k_1}x^{k_1} + \dots + m_{k_i}x^{k_i}) = f_0(m_0) + f_{k_1}(m_{k_1}) + \dots + f_{k_i}(m_{k_i}).$$

Then

$$\psi(\phi) = \sum_{n \in S} f_n x^{-n}.$$

Therefore, ψ is surjective. Hence, $Hom_{\mathbb{Z}}(M[x^s], N)$ and $Hom_{\mathbb{Z}}(M, N)$ [[x^{-s}]] are isomorphic as left $R[x^s]$ -modules.

Similarly, we can get the following two Theorems.

THEOREM 2.2. Let M be a left R-modules and S be a submonoid of N. Then

$$Hom_{\mathbb{Z}}(M[x^{-s}], N) \cong Hom_{\mathbb{Z}}(M, N)[[x^{s}]]$$

as left $R[x^s]$ -modules.

THEOREM 2.3. Let M, N be left R-modules and S be a submonoid of N. Then

$$\operatorname{Hom}_{\mathbb{Z}}(M[x^s,x^{-s}],N)\cong\operatorname{Hom}_{\mathbb{Z}}(M,N)[[x^s,x^{-s}]]$$

as left $R[x^s]$ -modules.

THEOREM 2.4. If $M \subset N$ is pure as left R-modules and $S = \{0, k_1, k_2, \dots\}$, then $M[x^s] \subset N[x^s]$ is pure as left $R[x^s]$ -modules.

Proof. Suppose $M \subset N$ is pure as left R-modules, then $f: N^+ \to M^+$ has a section and by Theorem 2.1, $(M[x^s])^+ \cong M^+[[x^{-s}]]$. Let $f^*: N^+[[x^{-s}]] \to M^+[[x^{-s}]]$ be defined by

$$f^*(\psi_0 + \psi_{k_1} x^{-k_1} + \psi_{k_2} x^{-k_2} + \cdots) = f(\psi_0) + f(\psi_{k_1}) x^{-k_1} + f(\psi_{k_2}) x^{-k_2} + \cdots$$

Since $f:N^+\to M^+$ has a section $g:M^+\to N^+$ such that $g\circ f=id_{M^+}.$ Define

$$g^*(\phi_0 + \phi_{k_1}x^{-k_1} + \phi_{k_2}x^{-k_2} + \cdots) = g(\phi_0) + g(\phi_{k_1})x^{-k_1} + g(\phi_{k_2})x^{-k_2} + \cdots$$

Then

$$(f^* \circ g^*)(\phi_0 + \phi_{k_1} x^{-k_1} + \phi_{k_2} x^{-k_2} + \cdots)$$

$$= f^*(g^*(\phi_0 + \phi_{k_1} x^{-k_1} + \phi_{k_2} x^{-k_2} + \cdots))$$

$$= f^*(g(\phi_0) + g(\phi_{k_1}) x^{-k_1} + g(\phi_{k_2}) x^{-k_2} + \cdots)$$

$$= f(g(\phi_0)) + f(g(\phi_{k_1})) x^{-k_1} + f(g(\phi_{k_2})) x^{-k_2} + \cdots$$

$$= (f \circ g)(\phi_0) + (f \circ g)(\phi_{k_1}) x^{-k_1} + (f \circ g)(\phi_{k_2}) x^{-k_2} + \cdots$$

$$= \phi_0 + \phi_{k_1} x^{-k_1} + \phi_{k_2} x^{-k_2} + \cdots$$

Therefore, $f^*: N^+[[x^{-s}]] \to M^+[[x^{-s}]]$ has a section g^* such that $f^* \circ g^* = id_{M^+[[x^{-s}]]}$. Hence, $M[x^s] \subset N[x^s]$ is pure as left $R[x^s]$ -modules.

THEOREM 2.5. If $M \subset N$ is pure as left R-modules and S be submonoid \mathbb{N} , then $M[x^s, x^{-s}] \subset N[x^s, x^{-s}]$ is pure as left $R[x^s]$ -modules.

Proof. Suppose $M \subset N$ is pure as left R-modules, then $f: N^+ \to M^+$ has a section and by Theorem 2.3, $(N[x^s, x^{-s}])^+ \cong N^+[[x^s, x^{-s}]]$ and $(M[x^s, x^{-s}])^+ \cong M^+[[x^s, x^{-s}]]$. Let $f^*: N^+[[x^s, x^{-s}]] \to M^+[[x^s, x^{-s}]]$ be defined by

$$f^*(\dots + n_{-k_1}x^{-k_1} + n_0 + n_{k_1}x^{k_1} + \dots)$$

= \dots + f(n_{-k_1})x^{-k_1} + f(n_0) + f(n_{k_1})x^{k_1} + \dots.

Define $q^*: M^+[[x^s, x^{-s}]] \to N^+[[x^s, x^{-s}]]$ by

$$g^*(\dots + m_{-k_1}x^{-k_1} + m_0 + m_{k_1}x^{k_1} + \dots)$$

= \dots + g(n_{-k_1})x^{-k_1} + g(m_0) + g(m_{k_1})x^{k_1} + \dots.

Thus

$$(f^* \circ g^*)(\dots + m_{-k_1}x^{-k_1} + m_0 + m_{k_1}x^{k_1} + \dots)$$

$$= f^*(g^*(\dots + m_{-k_1}x^{-k_1} + m_0 + m_{k_1}x^{k_1} + \dots))$$

$$= f^*(\dots + g(m_{-k_1})x^{-k_1} + g(m_0) + g(m_{k_1})x^{k_1} + \dots)$$

$$= \dots + f(g(m_{-k_1}))x^{-k_1} + f(g(m_0)) + f(g(m_{k_1}))x^{k_1} + \dots$$

$$= \dots + (f \circ g)(m_{-k_1})x^{-k_1} + (f \circ g)(m_0) + (f \circ g)(m_{k_1})x^{k_1} + \dots$$

$$= \dots + m_{-k_1}x^{-k_1} + m_0 + m_{k_1}x^{k_1} + \dots$$

Therefore, $f^*: N^+[[x^s, x^{-s}]] \to M^+[[x^s, x^{-s}]]$ has a section g^* such that $f^* \circ g^* = id_{M^+[[x^s, x^{-s}]]}$. Hence, $M[x^s, x^{-s}] \subset N[x^s, x^{-s}]$ is pure as left $R[x^s]$ -modules.

THEOREM 2.6. If $M \subset N$ is pure as left R-modules, then $M[x^{-s}] \subset N[x^{-s}]$ is pure as left $R[x^s]$ -modules.

Proof. Suppose $M \subset N$ is pure as left R-modules, then by $f: N^+ \to M^+$ has a section. By the Theorem 2.2, $Hom_{\mathbb{Z}}(M[x^{-s}], N) \cong Hom_{\mathbb{Z}}(M, N)$ [[x^s]]. That is, $(M[x^{-s}])^+$ and $M^+[[x^s]]$ are isomorphic as R[x]-modules. Let $f^*: N^+[[x^s]] \to M^+[[x^s]]$ be defined by

$$f^*(\psi_0 + \psi_{k_1} x^{k_1} + \psi_{k_2} x^{k_2} + \cdots) = f(\psi_0) + f(\psi_{k_1}) x^{k_1} + f(\psi_{k_2}) x^{k_2} + \cdots$$

Since $f: N^+ \to M^+$ has a section there exists $g: M^+ \to N^+$ such that $g \circ f = id_{M^+}$. Define

$$g^*(\phi_0 + \phi_{k_1}x^{k_1} + \phi_{k_2}x^{k_2} + \cdots) = g(\phi_0) + g(\phi_{k_1})x^{k_1} + g(\phi_{k_2})x^{k_2} + \cdots$$

Then

$$(f^* \circ g^*)(\phi_0 + \phi_{k_1} x^{k_1} + \phi_{k_2} x^{k_2} + \cdots)$$

$$= f^*(g^*(\phi_0 + \phi_{k_1} x^{k_1} + \phi_{k_2} x^{k_2} + \cdots))$$

$$= f^*(g(\phi_0) + g(\phi_{k_1}) x^{k_1} + g(\phi_{k_2}) x^{k_2} + \cdots)$$

$$= f(g(\phi_0)) + f(g(\phi_{k_1})) x^{k_1} + f(g(\phi_{k_2})) x^{k_2} + \cdots$$

$$= (f \circ g)(\phi_0) + (f \circ g)(\phi_{k_1}) x^{k_1} + (f \circ g)(\phi_{k_2}) x^{k_2} + \cdots$$

$$= \phi_0 + \phi_{k_1} x^{k_1} + \phi_{k_2} x^{k_2} + \cdots$$

Therefore, $f^*: N^+[[x^s]] \to M^+[[x^s]]$ has a section g^* such that $f^* \circ g^* = id_{M^+[[x^s]]}$. Hence, $M[x^{-s}] \subset N[x^{-s}]$ is pure as left $R[x^s]$ -modules. \square

REFERENCES

- [1] A. S. McKerrow, On the Injective Dimension of Modules of Power Series, Quart J. Math., Oxford 25(3), 359-368 (1974).
- [2] L. Melkersson, Contents and Inverse polynomials on artinian Modules, Comm. Algebra 26, 1141-1145 (1998).
- [3] D. G. Northcott, *Injective Envelopes and Inverse Polynomials*, London Math. Soc. (2), 290–296 (1974).
- [4] S. Park, Inverse Polynomials and Injective Covers, Comm. Algebra 21, 4599–4613 (1993).
- [5] S. Park, The Macaulay-Northcott Functor, Arch. der Math. 63, 225–230 (1994).
- [6] S. Park, Gorenstein Rings and Inverse Polynomials, Comm. Algebra 28 (2), 785-789 (2000).
- [7] S. Park, The General Structure of Inverse Polynomial Modules, Czech. Math. J. 51 (126), 343-349 (2001).
- [8] S. Park and E.Cho, Purity of Polynomial Modules and Inverse Polynomial Modules, Bull. Korean Math. Soc., 42 (3), 607-614 (2005).
- [9] J. Rotman, An Introduction to Homological Algebra, Academic Press Inc., New York (1979).

Sangwon Park
Department of Mathematics
Dong-A University
Busan 604-714, Korea
E-mail: swpark@donga.ac.kr

Eunha Cho Department of Mathematics Dong-A University Busan 604-714, Korea E-mail: choeh@donga.ac.kr