Eco-toxicogenomics Research with Fish

  • Park, Kyeong-Seo (National Research Lab on Environmental Biotechnology Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, Han-Na (National Research Lab on Environmental Biotechnology Gwangju Institute of Science and Technology (GIST)) ;
  • Gu, Man-Bock (National Research Lab on Environmental Biotechnology Gwangju Institute of Science and Technology (GIST))
  • Published : 2005.03.31

Abstract

There are some critical drawbacks in the use of biomarkers for a global assessment of the toxicological impacts many chemicals and environmental pollutants have, primarily due to an individual biomarker's specificity for an explicit chemical or toxicant. In other words, the biomarker-based assessment methodology used to analyze toxicological effects lacks a high-throughput capability. Therefore, eco-toxicogenomics, or the study of toxicogenomics with organisms present within a given environmental locale, has recently been introduced with the advent of the so-called "-omics" era, which began with the creation of microarray technologies. Fish are comparable with humans in their toxicological responses and thus data from toxicogenomic studies performed with fish could be applied, with appropriate tools and implementation protocols, to the evaluation of environments where human or animal health is of concern. At present, there have been very active research streams for developing expression sequence tag (EST) databases (DBs) for zebra fish and rainbow trout. Even though few reports involve toxicogenomic studies with fish, a few groups have successfully fabricated and used cDNA microarrays or oligo DNA chips when studying the toxicological impacts of hypoxia or some toxicants with fish. Furthermore, it is strongly believed that this technology can also be implemented with non-model fish. With the standardization of DNA microarray technologies and ample progress in bioinformatics and proteomic technologies, data obtained from DNA microarray technologies offer not only multiple biomarker assays or an analysis of gene expression profiles, but also a means of elucidating gene networking, gene-gene relations, chemical-gene interactions, and chemical-chemical relationships. Accordingly, the ultimate target of eco-toxicogenomics should be to predict and map the pathways of stress propagation within an organism and to analyze stress networking.

Keywords

References

  1. Thomas, R.S. et al. Identification of toxicologically predictive gene sets using cDNA microarrays. Mod. Pharmacol. 60, 1189-1194 (2001) https://doi.org/10.1124/mol.60.6.1189
  2. Kime, D.E., Endocrine disruption in fish. Kluwer academic publishers (1998).
  3. Eason, C. & K. O'Halloran. Biomarkers in toxicology versus ecological risk assessment. Toxicology. 181/ 182, 517-521 (2002) https://doi.org/10.1016/S0300-483X(02)00472-9
  4. Todorov, J.R., Elskus A.A., Schlenk D., Ferguson P.L., Brownawell B.J. & McElroy A.E. Estrogenic responses of larval sunshine bass (Morone saxatilis x M. Chrysops)exposed to New York City sewage effluent. Marine Environ. Res. 54, 691-695 (2002) https://doi.org/10.1016/S0141-1136(02)00197-6
  5. Hemmer, M.J., Hemmer B.L., Bowman C.J., Kroll K.J., Folmar L.C., Marcovich D., Hoglund M.D. & Denslow N.D. Effects of p-nonylphenol, methoxychor, and endosulfan on vitellogenin induction and expression in sheepsheead minnow (Cyprinodon variegatus). Environ. Toxicol. Chem. 20, 336-343 (2001) https://doi.org/10.1897/1551-5028(2001)020<0336:EOPNMA>2.0.CO;2
  6. Hemmer, M.J., Bowman C.J., Hemmer B,L., Friedman S.D., Marcovich D., Kroll K.J. & Denslow N.D. Vitellogenin mRNA regulation and plasma clearance in male sheepshead minnows (Cyprinodon variegatus) after cessation of exposure to 17${\beta}$-estradiol and p-nonylphenol. Aquat. Toxicol. 58, 99-112 (2002)
  7. Vethaak, A.D., Lahr J., Kuiper R.V., Grinwis G.C., Rankouhi T.R., Giesy J.P. & Gerritsen A. Estrogenic effects in fish in the Netherlands: some preliminary results. Toxicology 27, 147-150 (2002) https://doi.org/10.1016/0300-483X(83)90019-7
  8. Schena M., Shalon D., Davis RW. & Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467-70 (1995) https://doi.org/10.1126/science.270.5235.467
  9. Afshari, C.A., Numaysir, E.F. & Barrett, J.C. Application of complementary DNA microarray technology to carcinogen identification, toxicology, and drug safety evaluation. Cancer Research 59, 4759-60 (1999)
  10. http://dir.niehs.nih.gov/microarray/backgrnd.htm.
  11. Neumann, N.F. & Galvez F. DNA microarrays and toxicogenomics: applications for ecotoxicology? Biotechnol. Adv. 20(5-6), 391-419 (2002) https://doi.org/10.1016/S0734-9750(02)00025-3
  12. Gracey, A.Y., Troll, J.V. & Somero, G.N. Hypoxiainduced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc. Natl. Acad. Sci. 98, 1993- 1998 (2000)
  13. Podrabsky, J.E. & Somero, G.N. Change in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in annual killifish Austrofundulus limnaeus. J. Exp. Biol. 207, 2237-2254 (2004) https://doi.org/10.1242/jeb.01016
  14. Renae, L.M., Hedieh, S, Joseph, A, Martin, A.G. & Glenn, S.G. The effects of temperature reduction on gene expression and oxidative stress in skeletal muscle from adult zebrafish. Comparative Biochemistry and Physiology, Part C 138, 363?373 (2004) https://doi.org/10.1016/j.cbpb.2004.05.006
  15. Linney, E., Upchurch, L. & Donerly, S. Zebrafish as a neurotoxicological model. Neurotoxicology and Teratology 26, 709-718 (2004) https://doi.org/10.1016/j.ntt.2004.06.015
  16. Meijer, A.H. et al. Transcriptome profiling of adult zebrafish at the late stage of chronic tuberculosis due to Mycobacterium marinum infection. Molecular Immunology online (2005)
  17. Ton, C., Stamatiou, D., Dzau, V. & Liew, C. Construction of a zebrafish cDNA microarray: gene expression profiling of the zebrafish during development. Biochem. Biophy. Res. Commun. 296, 1134- 1142 (2002) https://doi.org/10.1016/S0006-291X(02)02010-7
  18. Rise, M.L. et al. Development and application of a salmonid EST database and cDNA microarray: data mining and interspecific hybridization characteristics. Genome Res. 14(3), 478-90 (2004) https://doi.org/10.1101/gr.1687304
  19. Rexroad, C.E. 3rd, Keele, J.W., Gahr, S.A., Palti, Y., Lee, Y., Karamycheva, S. & Quackenbush, J. Sequence analysis of a rainbow trout cDNA library and creation of a Gene Index. Cytogenetics and Genome Research 102, 304-354 (2003) https://doi.org/10.1159/000075767
  20. Douglas, S.E., Belanger, J.C., Tsoi, S.C.M., Williams, J. & Ewart, K.V. Identification of differentially expressed genes involved in Atlantic salmon (Salmo salar) host-pathogen interaction using microarray technology. In: Proceedings of the sixth international marine biotechnology conference-aquatic genomics symposium. (2003)
  21. Williams, T.D., Gensberg, K., Minchin, S.D., Chipman, J.K. A DNA expression array to detect toxic stress response in European flounder (Platichthys flesus). Aquat. Toxicol. 65(2),141-57 (2003) https://doi.org/10.1016/S0166-445X(03)00119-X
  22. Byon, J.Y., Ohira, T. & Hirono, I., Aoki, T. Use of a cDNA microarray to study immunity against viral hemorrhagic septicemia (VHS) in Japanese flounder (Paralichthys olivaceus) following DNA vaccination. Fish & Shellfish Immunology 18, 135-147 (2005) https://doi.org/10.1016/j.fsi.2004.06.008
  23. Kimura, T. et al. Large-scale isolation of ESTs from medaka embryos and its application to medaka developmental genetics. Mech Dev. 121(7-8), 915-32 (2004) https://doi.org/10.1016/j.mod.2004.03.033
  24. Katogi, R., Nakatani, Y., Shin-i, T., Kohara, Y., Inohaya, K. & Kudo, A. Large-scale analysis of the genes involved in fin regeneration and blastema formation in the medaka, Oryzias latipes. Mech Dev. 121(7-8), 861-72 (2004) https://doi.org/10.1016/j.mod.2004.03.015
  25. Wang, E., Miller, L.D., Ohnmacht, G.A., Liu, E.T. & Marincola, F.M. High-fidelity mRNA amplification for gene profiling. Nature Biotechnology, 18, 457- 459 (2000) https://doi.org/10.1038/74546
  26. Nuwaysir, E.F., Bittner, M., Trent, J., Barrett, J.C. & Afshari, C.A. Microarrays and toxicology: the advent of toxicogenomics. Mol. Carcinogenesis 24, 153-159 (1999) https://doi.org/10.1002/(SICI)1098-2744(199903)24:3<153::AID-MC1>3.0.CO;2-P
  27. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Proc. Natl. Acad. Sci. 95, 14863-14868 (1998)
  28. Butte, A.J. & Kohane, I.S. Mutual information relevance network: functional genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput. 418-429 (2000)
  29. Kohonen, T. Self-Organizing Maps (Springer, New York 1997)
  30. Kwok, S., Chang, S.Y., Sninsky, J.J. & Wang, A. A guide to the design and use of mismatched and degenerate primers. PCR Methods Appl. 3(4), 39-47 (1994) https://doi.org/10.1101/gr.3.4.S39
  31. Koskinen, H., Pehkonen, P., Vehniainen, E., Krasnov, A., Rexroad, C., Afanasyev, S., Molsa, H. & Oikari, A. Response of rainbow trout transcriptome to model chemical contaminants. Biochem. Biophys. Res. Commun. 320(3), 745-53 (2004) https://doi.org/10.1016/j.bbrc.2004.06.024