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BILINEAR SYSTEMS CONTROLLER DESIGN

WITH APPROXIMATION TECHNIQUES

Sang-Hyuk Lee* and Keonhee Lee**

Abstract. Using the iterative method, we derive an controller re-
alization of the bilinear system, which is resulted from the system

reformulation. We utilize Banach Fixed Point Theorem to support

proposed controller, and the simulation results are also illustrated to

verify usefulness of this technique.

1. Introduction

To consider the optimal controller structure for the bilinear system

with quadratic cost, iterative design is stated and the canonical equa-

tions of the problem are given with the presentation closely related

to the Riccati approach in linear quadratic optimization. Using the

properties of the Banach fixed point theorem, we prove the conver-

gence of the iteration procedure. Bilinear systems are special class of

nonlinear systems possessing many of the properties of linear systems.

Hence, there is a need for theoretical results sufficiently close to those

already applied for linear systems. The design problem of controllers

for bilinear system has been studied by numerous authors ([2], [3]).

Most of the obtained results rely on optimization theory, either us-

ing quadratic cost or criteria linear in control, specially through the

application of Pontryagin’s principle leading to bang-bang controls or

minimizing controls or minimizing control time. Obtaining the op-

timal solution was not easy because of the nonlinearity in bilinear
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system. For the purpose of obtaining the optimal solution for bilinear

systems, it is required to use closely related Riccati approach in linear

quadratic optimization.

2. Riccati approach for the solution of linear system

In this section, we introduce the useful definitions and theorem

to guarantee convergence of variables. Furthermore simple controller

realization procedure for linear systems has been illustrated, and we

also formulate and provide iterative procedure of the time varying

system.

2.1. Statement of the problem.

We consider dynamical systems generated by ordinary differential

equations in Rp. Next, x(t) ∈Rp denotes a vector valued function of

t ∈R.

Consider the following problem

ẋ(t) = f(t), x(0) = x0 ∈ Rp,

where f ∈ C(Rp,Rp).

Definition 2.1. (Invariant Set) A subset D of a Banach space (B, || ·

||) is invariant under operator T if T (D) ⊆ D is satisfied.

Definition 2.2. (Contraction Mapping Theorem) Suppose that F :

D → D where D is a closed subset of a Banach space (B, || · ||) and

that F (·) is a contraction on D with constant µ,

∃µ < 1, ||F (x) − F (y)|| ≤ µ||x − y||, ∀x, y ∈ D.

Then there exactly one point x∗ ∈ D such that F (x∗) = x∗. The fixed

point x∗ denotes the Banach fixed point.
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Control solution to the linear systems

Now, we briefly introduce the one of controller design procedures

for linear systems. Consider the finite dimensional linear system

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),

where x(t) ∈ Rn, u(t) ∈ R and y(t) ∈ R are state, input and

output vectors, respectively, and the matrices A ∈Rn×m, B ∈Rn×1

and C ∈ R1×m are satisfied. For the final time tf , cost function is

J =
1

2
(Cx(tf ) − r(tf ))T P (Cx(tf ) − r(tf )) (1)

+
1

2

∫ tf

0

{(Cx(t) − r(t))T Q(Cx(t) − r(t)) + u(t)T Ru(t)}dt,

where P = P
T
≥ 0, Q = Q

T
≥ 0 and R > 0.

With the Hamiltonian of the problem

H(x, u, p) =
1

2
{(Cx(t) − r(t))T Q(Cx(t) − r(t)) + u(t)T Ru(t)}

+ p(t)T {Ax(t) + Bu(t)}, (2)

the optimal control u∗(t) = −P
−1

BT p(t) is determined by ∂H
∂u = 0

([6]). And the costate equation is represented by ∂H
∂x = −ṗ. For the

tracking problem, costate p(t) = Sx(t) − v(t) is obtained from the

following relations

0 = AT S + SA − SBR
−1

BT S + Q,

− v̇(t) = (A − BR
−1

BT S)T v(t) + CTQr(t), v(tf ) = CT Pr(tf ).

S is obtained off-line, and v(t) is also precomputed and stored if the

reference track r(t) is known a priori.
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Control solution to the bilinear systems

Consider a finite dimensional bilinear systems

ẋ(t) = Ax(t) + Bu(t)+ < x(t)N > u(t),

y(t) = Cx(t),

where x(t) ∈Rn, u(t) ∈R and y(t) ∈ Rr are state, input, output

vectors, respectively; A ∈ Rn×n, B ∈Rn×1, C ∈ R1×n, < x(t)N >=
∑n

j=1 xj(t)Nj , Nj ∈ Rn×1, j = 1, · · · , n.

At this time, we hold same cost function (1) to bilinear system,

then the Hamiltonian of the problem has the following structure

H(x, u, p) =
1

2
{(Cx(t) − r(t))T Q(Cx(t) − r(t)) + u(t)T Ru(t)}

+ p(t)T {Ax(t)+ < x(t)N > u(t) + Bu(t)}. (3)

By the same procedure, optimal control u∗

u∗(t) = −R
−1

(B+ < x(t)N >)T p(t)

is obtained from the necessary optimality condition ∂H
∂u = 0. Further-

more costate variable p(t) satisfies ∂H
∂x = −ṗ. Then, we can rewrite

state and costate equations as follows

ẋ = Ãx(t) − B̃R
−1

B̃T p(t), x(0) = x0, (4)

ṗ = −Q̃x(t) − ÃT p(t) + CT Qr(t), (5)

p(tf ) = CTPCx(tf ) − CT Pr(tf ).

The time-varying matrices Ã, Q̃ and B̃R
−1

B̃T denote

Ã = [ãij ] = aij −
1

2
[(NjR

−1
BT + BR

−1
NT

j )p(t)]i,
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ãij is an i-th row and j-th column element of matrix Ã,

Q̃ = [q̃ij ] = [CT QC ]ij −
1

2
pT (t)(NiR

−1
NT

j + NjR
−1

NT
i )p(t),

q̃ij is an i-th row and j-th column element of matrix Q̃,

B̃R
−1

B̃T = (B+ < xN >)R
−1

(B+ < xN >)T

−
1

2
(< xN > R

−1
BT + BR

−1
< xN >T ).

The above problems are called two-point boundary-value problems,

and they are sometimes rather difficult to solve, even with a high speed

computer. Notice that the difference equations of state and costate

equations are coupled and time varying, optimal control scheme is

different from linear quadratic controller. This version of control law

cannot be implemented in practice, since the boundary conditions are

split between times t = 0 and t = tf . Let us find a more useful version.

The optimal control is linear costate feedback, but unfortunately, be-

cause of the forcing term in the costate equation and boundary con-

dition p(tf ), it is no longer possible to express it as a linear state

feedback as we did for the linear quadratic optimal controller. How-

ever, we can express u(t) as a combination of a linear state variable

feedback plus a term depending on r(t). From the looks of boundary

condition p(tf ), it seems reasonable to assume that for all t ≤ tf , we

can write

p(t) = S(t)x(t) − v(t)

for some as yet unknown auxiliary sequences S(t) and v(t). Note that

S(t) is an n × n matrix, whereas v(t) is an n vector.

State equation becomes

ẋ(t) = Ãx(t) − B̃R
−1

B̃T (S(t)x(t) − v(t)).
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Differentiate costate definition to find the intermediate function S(t)

ṗ(t) = Ṡ(t)x(t) + S(t) ˙x(t) − v̇(t). (6)

Now, taking into account the costate equation (5), we have obtained

following results by equating Eqs. (5) and (6)

− Ṡ(t) = S(t)Ã + ÃT S(t) − S(t)B̃R
−1

B̃T S(t) + Q̃,

− v̇(t) = ÃT v(t) − S(t)B̃R
−1

B̃T v(t) + CTQr(t).

Since the matrix sequence S(t) is independent of the state trajectory,

so the Riccati equation can be solved off-line, and S(t) can be stored.

If the reference track r(t) is known a priori, the auxiliary function v(t)

can also be precomputed and stored. However, that v(t) has been

determined by integrating backward the closed-loop adjoint system

with v(tf ) = CT Pr(tf ).

Then, the optimal tracking control becomes

u(t) = −R
−1

(B+ < x(t)N >)T S(t)x(t) + R
−1

(B+ < x(t)N >)T v(t).

2.2. Iterative procedure.

In the previous subsection, we note that Ã(t), Q̃(t) and B̃R
−1

B̃T (t)

are functions of the costate p(t) and state x(t). And superscript (j)

denotes iteration index j = 0, 1, · · · . For the brevity of notation, itera-

tion sequences of Ã(p(j)(t)), Q̃(p(j)(t)) and B̃(x(j)(t))R
−1

B̃T (x(j)(t))

are simplified by

Ã(j)(t) = Ã(p(j)(t)) = A(j),

Q̃(j)(t) = Q̃(p(j)(t))

and B̃(j)(x(j))R
−1

B̃T (j)(t) = B̃(x(j))R
−1

B̃T (x(j)(t)) = B(j).
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With the definition of p(t) = S(t)x(t)−v(t), the iterative solutions

of the state and costate equations are obtained from the following

equations

− Ṡ(j+1)(t) = A(j)T S(j+1)(t) + S(j+1)(t)A(j)

− S(j+1)(t)B(j)S(j+1)(t) + Q̃(j),

− v̇(j+1)(t) = (A(j) − B(j)S(j+1)(t))T v(j+1)(t) + CT Q̃(j)r(t),

ẋ(j+1)(t) = A(j)x(j+1)(t) − B(j)S(j+1)x(j+1)(t) + B(j)v(j+1)(t)

and

ṗ(j+1)(t) = −Q̃(j)x(j+1)(t) − A(j)T p(j+1)(t) + CT Q̃r(t),

where the boundary conditions denote S(j+1)(tf ) = CTPC , v(j+1)(tf )

= CT Pr(tf ) and x(0)(0) = x0.

For each iteration, the feedback controller is given by

u(j+1)(t)

= −R
−1

(B+ < x(j+1)(t)N >)T (S(j+1)(t)x(j+1)(t) − v(j+1)(t)),

where the matrix S(j+1)(t) is calculated from the Riccati equation.

Hence we confirm that in the bilinear quadratic case the Riccati ma-

trix depends on the initial state x0 in contrast to the linear quadratic

problem. This point seems to be natural because of the nonlinearity

of the bilinear system.

3. Analysis on the proof of convergence

In this section, we show the convergence of iterative sequences x(j),

v(j) and S(j). Next, we define some definitions ([7]).

Definition 3.1. Let B1 = C([0, tf ], Rn), B2 = C([0, tf ], Rn×n) be
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the two Banach spaces with the norms

||x||ǫ = sup
t∈[0,tf ]

[||x(t)||e−ǫt], x ∈ B1,

||v||ǫ = sup
t∈[0,tf ]

[||v(t)||e−ǫ(tf
−t)], v ∈ B1,

||S||ǫ = sup
t∈[0,tf ]

[||S(t)||e−ǫ(tf
−t)], S ∈ B2,

where ||x|| = [Σn
i=1x

2
i ]

1/2, ||v|| = [Σn
i=1v

2
i ]1/2 and ||S|| = [Σn

i,j=1S
2
ij]

1/2.

In Definition 2.1, B1 and B2 are the spaces of all real-valued, con-

tinuous, smooth n-vector functions and n×n matrix defined on [0, tf ],

respectively.

Definition 3.2. The three operators T1, T2 and T2 are defined as

follows

T1[x, v, S] = x̄, x̄ ∈ B1,

T2[x, v, S] = v̄, v̄ ∈ B1,

T3[x, v, S] = S̄, S̄ ∈ B2.

B1 × B1 × B2 denotes the ordered triplets (x, v, S), where x ∈ B1,

v ∈ B1 and S ∈ B2.

Definition 3.3. Subsets D1 ⊆ B1, D2 ⊆ B1 and D3 ⊆ B2 are invari-

ant under T1, T2 and T3 if T1[D1,D2,D3] ⊆ D1, T2[D1,D2,D3] ⊆ D2

and T3[D1,D2,D3] ⊆ D3 are satisfied.

Definition 3.4. Operators T1, T2 and T3 are called contractive in

the space D1×D2×D3 if a 3×3 matrix M exists with all eigenvalues

in the unit circle such that, for all x(j), x(j−1) ∈ D1, v(j), v(j−1) ∈ D2
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and S(j), S(j−1) ∈ D3, the following inequality




||T1[x
(j), v(j), S(j)] − T1[x

(j−1), v(j−1), S(j−1)]||ǫ
||T2[x

(j), v(j), S(j)] − T2[x
(j−1), v(j−1), S(j−1)]||ǫ

||T3[x
(j), v(j), S(j)] − T3[x

(j−1), v(j−1), S(j−1)]||ǫ





≤ M





||x(j) − x(j−1)||ǫ
||v(j) − v(j−1)||ǫ
||S(j) − S(j−1)||ǫ





holds componentwise.

Theorem 3.1. Assuming that the operators T1, T2 and T3 have

the invariant sets D1, D2 and D3 and the property of contraction in

D1 ×D2 × D3. Then the iteration procedures

x(j+1) = T1[x
(j), v(j), S(j)],

v(j+1) = T2[x
(j), v(j), S(j)],

S(j+1) = T3[x
(j), v(j), S(j)],

with x(0) ∈ D1, v(0) ∈ D2 and S(0) ∈ D3 converge to the unique fixed

points x∗, v∗ and S∗. The equivalent mathematical formulation of

the theorem is

lim
j→∞

||x(j) − x∗|| = 0, lim
j→∞

||v(j) − v∗|| = 0, lim
j→∞

||S(j) − S∗|| = 0.

Proof. D1, D2 and D3 denote the invariant sets since it is assumed

at first, hence iterative sequences are satisfied by x(j) ∈ D1, v(j) ∈ D2

and S(j) ∈ D3 with initial conditions x(0) ∈ D1, v(0) ∈ D2 and

S(0) ∈ D3. By Definition 3.2, the following expression




||x(p) − x(q)||ǫ
||v(p) − v(q)||ǫ
||S(p) − S(q)||ǫ





=





||T1[x
(p−1), v(p−1), S(p−1)] − T1[x

(q−1), v(q−1), S(q−1)]||ǫ
||T2[x

(p−1), v(p−1), S(p−1)] − T2[x
(q−1), v(q−1), S(q−1)]||ǫ

||T3[x
(p−1), v(p−1), S(p−1)] − T3[x

(q−1), v(q−1), S(q−1)]||ǫ




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is derived. Assuming p > q, then we can derive





||x(p) − x(q)||ǫ
||v(p) − v(q)||ǫ
||S(p) − S(q)||ǫ





=





||x(p) − x(p−1) + x(p−1) − x(p−2) + x(p−2) + · · · + x(q+1) − x(q)||ǫ
||v(p) − v(p−1) + v(p−1) − v(p−2) + v(p−2) + · · · + v(q+1) − v(q)||ǫ

||S(p) − S(p−1) + S(p−1) − S(p−2) + S(p−2) + · · · + S(q+1) − S(q)||ǫ





≤

p
∑

j=q+1





||x(j) − x(j−1)||ǫ
||v(j) − v(j−1)||ǫ
||S(j) − S(j−1)||ǫ



 .

From Definition 3.4, we obtain the following inequality





||x(p) − x(q)||ǫ
||v(p) − v(q)||ǫ
||S(p) − S(q)||ǫ



 ≤

p
∑

j=q+1

Mj−1





||x(1) − x(0)||ǫ
||v(1) − v(0)||ǫ
||S(1) − S(0)||ǫ



 ,

and with the relation

(Mq + Mq+1 + · · · + Mp−1)(I − M) = Mq − Mp,

the following inequality





||x(p) − x(q)||ǫ
||v(p) − v(q)||ǫ
||S(p) − S(q)||ǫ





≤ Mq(I − Mp−q)(I − M)−1





||x(1) − x(0)||ǫ
||v(1) − v(0)||ǫ
||S(1) − S(0)||ǫ



 (7)

is carried out.

By the contractive property of the operator T1, T2 and T3, all

eigenvalues of the matrix M are in the unit circle. If λ1, λ2, · · · , λn

are the eigenvalues of M , then λk
1 , λ

k
2 , · · · , λk

n are the eigenvalues of

Mk. We can check the fact that ρ(M)k = ρ(Mk) ([4]), where ρ(M) is



BILINEAR SYSTEMS CONTROLLER DESIGN 111

the eigenvalue of M . Hence the eigenvalues of Mq+Mq+1+· · ·+Mp−1

can be made arbitrarily small by choosing q sufficiently large. Thus,

for every ǫ1 > 0, ǫ2 > 0 and ǫ3 > 0, there is an integer N such that

||x(p) − x(q)||ǫ ≤ ǫ1, ||v(p) − v(q)||ǫ ≤ ǫ2, ||S(p) − S(q)||ǫ ≤ ǫ3

if p ≥ N and q ≥ N hold. Then by (7), ||x(p) − x(q)||ǫ → 0,

||v(p) − v(q)||ǫ → 0 and ||S(p) − S(q)||ǫ → 0 as p, q → ∞. Hence

the sequences x, v and S are Cauchy sequence, and the sequences x,

v and S converge. We now assert that x∗, v∗ and S∗ are fixed points

of T1, T2 and T3. Since T1, T2 and T3 are continuous, we know

lim
q→∞

T1[x
(q), v(q), S(q)] = x∗,

lim
q→∞

T2[x
(q), v(q), S(q)] = v∗,

lim
q→∞

T3[x
(q), v(q), S(q)] = S∗,

as desired. �

If iterative sequences x(j), v(j) and S(j) converge to the unique fixed

point x∗, v∗ and S∗, then the convergence of input magnitude |u| is

derived with the iteration procedure. In order to apply Theorem 3.1,

the existence of invariant subsets D1, D2 and D3 the contractiveness

of the operators T1, T2 and T3 in D1 × D2 × D3 have to be required.

3.1. Approximation techniques.

When Theorem 3.1 is applied to the proof of convergence of itera-

tive scheme, we give another approach that the differential equations

are replaced by

ẋ(j+1)(t) := A
(j)

x(j+1)(t) + B(j)v(j+1)(t),

v̇(j+1)(t) := A
(j)T

v(j+1)(t) + CT Qr(t),

Ṗ (j+1)(t) + A
T (j)

P (j+1)(t) + P (j+1)(t)A
(j)

+ Q
(j)

= 0,
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where A
(j)

= A(j) − B(j)P (j) and Q
(j)

= Q̃(j) + P (j)B(j)P (j) ([1]).

Then the norm of differences P (j+1)(t)−P (j)(t), v(j+1)(t)− v(j)(t)

and x(j+1)(t) − x(j)(t) are satisfied as follows

||P (j+1)(t) − P (j)(t)||ǫ ≤ v7||x
(j)(t) − x(j−1)(t)||ǫ

+ v8||v
(j)(t) − v(j−1)(t)||ǫ + v9||P

(j)(t) − P (j−1)(t)||ǫ,

||v(j+1)(t) − v(j)(t)||ǫ ≤ v4||x
(j)(t) − x(j−1)(t)||ǫ

+ v5||v
(j)(t) − v(j−1)(t)||ǫ + v6||P

(j)(t) − P (j−1)(t)||ǫ,

||x(j+1)(t) − x(j)(t)||ǫ ≤ v1||x
(j)(t) − x(j−1)(t)||ǫ

+ v2||v
(j)(t) − v(j−1)(t)||ǫ + v3||P

(j)(t) − P (j−1)(t)||ǫ,

where the values of v1, v2, · · · , v9 are determined by

v1 = (N1 + β4v4 + β3v7)|t
f |eǫ(tf

−t),

v2 = (N2 + β4v5 + β3v8)|t
f |eǫ(tf

−t),

v3 = (N3 + β4v6 + β3v9)|t
f |eǫ(tf

−t), v4 = (N4 + δ3v7)|t
f |eǫt,

v5 = (N5 + δ3v8)|t
f |eǫt, v6 = (N6 + δ3v9)|t

f |eǫt,

v7 = N7|t
f |eǫt, v8 = N8|t

f |eǫt, v9 = N9|t
f |eǫt.

The above values of v1, v2, · · · , v9 can be founded in [7].

In the above equations, we show that ||x(j+1) − x(j)||ǫ, ||v
(j+1) −

v(j)||ǫ and ||P (j+1) −P (j)||ǫ are bounded with the combination of the

norms of ||x(j) − x(j−1)||ǫ, ||v
(j) − v(j−1)||ǫ and ||P (j) − P (j−1)||ǫ.

Arranging the above relations,

||T1[x
(j), v(j), P (j)] − T1[x

(j−1), v(j−1), P (j−1)]||ǫ

≤ v1||x
(j) − x(j−1)||ǫ + v2||v

(j) − v(j−1)||ǫ + v3||P
(j) − P (j−1)||ǫ,

||T2[x
(j), v(j), P (j)] − T2[x

(j−1), v(j−1), P (j−1)]||ǫ

≤ v4||x
(j) − x(j−1)||ǫ + v5||v

(j) − v(j−1)||ǫ + v6||P
(j) − P (j−1)||ǫ,
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||T3[x
(j), v(j), P (j)] − T3[x

(j−1), v(j−1), P (j−1)]||ǫ

≤ v7||x
(j) − x(j−1)||ǫ + v8||v

(j) − v(j−1)||ǫ + v9||P
(j) − P (j−1)||ǫ,

the equivalent matrix notation is satisfied as follows




||T1[x
(j), v(j), P (j)] − T1[x

(j−1), v(j−1), P (j−1)]||ǫ
||T2[x

(j), v(j), P (j)] − T2[x
(j−1), v(j−1), P (j−1)]||ǫ

||T3[x
(j), v(j), P (j)] − T3[x

(j−1), v(j−1), P (j−1)]||ǫ





≤ M





||x(j) − x(j−1)||ǫ
||v(j) − v(j−1)||ǫ
||P (j) − P (j−1)||ǫ



 ,

where M =





v1 v2 v3

v4 v5 v6

v7 v8 v9



.

As mentioned above, values of v1, v2, · · · , v9 contain the inverse of

the design matrix R as a multiplicative element and x(j), x(j−1), v(j),

v(j−1), P (j) and P (j−1). Hence we can make three operators T1, T2

and T3 are contractive, namely, elements of matrix M can be made

arbitrary small by choosing R large enough.

3.2. Invariant set.

Now we construct the invariant sets D1, D2 and D3, in which the

operators T1, T2 and T3 are contractive. The invariant sets D1, D2

and D3 are constructed by

D1 = {x ∈ B1, ||x − x(0)||ǫ ≤ l1}, l1 > 0,

D2 = {v ∈ B1, ||v − v(0)||ǫ ≤ l2}, l2 > 0,

D3 = {P ∈ B2, ||P − P (0)||ǫ ≤ l3}, l3 > 0.

Then values of l1, l2 and l3 can be solved as follows. For the natural

number N ,

l1 = sup
p∈N

(Πp
i=q+1αi + Πp−1

i=q+1αi + · · · + αq+2αq+1 + αq+1)||x
(1) − x(0)||ǫ,

l2 = sup
p∈N

(Πp
i=q+1βi + Πp−1

i=q+1βi + · · · + βq+2βq+1 + βq+1)||v
(1) − v(0)||ǫ,

l3 = sup
p∈N

(Πp
i=q+1γi + Πp−1

i=q+1γi + · · · + γq+2γq+1 + γq+1)||S
(1) − S(0)||ǫ,
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where 0 ≤ αi, βi, γi < 1.

Proof. See also [5]. �

4. Computer simulation

Consider Continuous-Stirred Tank Reactor (CSTR) model, which

has the following equation

ẋ(t) = Ax(t) + Bu(t)+ < x(t)N > u(t),

y(t) = Cx(t),

where

A =

(

13/6 5/12
−50/3 −8/3

)

, B =

(

−1/8
0

)

, N1 =

(

−1
0

)

, N2 =

(

0
0

)

.

Cost function is considered by

J =
1

2
(Cx(tf ) − r(tf ))T P (Cx(tf ) − r(tf ))

+
1

2

∫ tf

0

{(Cx(t) − r(t))T Q(Cx(t) − r(t)) + u(t)T Ru(t)}dt,

where the weighting matrices are chosen by P =

(

1000 0
0 1000

)

,

Q =

(

100 0
0 100

)

and R = 1.

Final time tf is 3(s), sampling time is 0.001(s), initial value is

x0 ∈ (( 0.15 0 ))T . Figure 1 represents the CSTR temperature and

concentration. k represents the iteration number, hence we can find

that the response converges as iteration increases. In Figure 2, control

variable is illustrated. It can be noticed that as iteration processed,

control profile is also converged.

5. Conclusions

We have performed the optimal controller structure for the bilinear

system with quadratic cost. We have also generalized the iterative
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methods for the tracking case. Bilinear system variables are redefined,

and we have proposed iterative algorithm to obtain the convergence

of variables. With these values, a state feedback controller is con-

structed. The convergence proof is given based on the Banach fixed

point theorem. For the CSTR system, we have verified convergence

of variables with the computer simulation.
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