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THE CONNECTIVITY OF INSERTED GRAPHS

M.R. Adhikari* and L.K. Pramanik**

Abstract. The aim of the paper is to study the connectivity and

the edge-connectivity of inserted graph I(G) of a graph G with the

help of connectivity and the edge-connectivity of that graph G.

1. Introduction

We consider ordinary graphs (finite, undirected,with no loops or mul-

tiple edges). Let G be a graph with vertex set VG and edge set EG.

Each member of VG ∪EG will be called an element of G. A graph G is

called trivial graph if it has a vertex set with single vertex and a null

edge set. If e be an edge of a graph G with end vertices x and y, then

we denote the edge e = xy.

We introduce the notions of box graph B(G) and inserted graph I(G)

of a non-trivial graph G in [2]. It is an elementary basic fact that the

inserted graph I(G) of a non-trivial connected graph G in connected.

There are two major measures how highly connected a graph can be,

namely the connectivity and edge-connectivity.

The connectivity k(G) of a graph G is the least number of vertices

whose removal (along with all incident edges) disconnected G or reduces

it to the trivial graph; a set of k(G) vertices satisfying this condition is

called a minimal separating vertex set of G. Moreover G is n-connected

if and only if k(G) ≥ n. On the other hand, the edge-connectivity λ(G)

of a graph G is the least number of edges whose removal disconnected
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G or reduces it to the trivial graph; and a set of λ(G) edges satisfying

this condition is called a minimal separating edge set of G. Moreover

G is m-edge-connected if and only if λ(G) ≥ m. Thus a non-trivial

graph is connected if and only if it has positive connectivity (and edge-

connectivity).

In Section 2, we recall some definitions and results to be used in this

paper and also give an example of connectivity and edge-connectivity

of a graph G and its inserted graph I(G).

In Section 3, we investigate the relationship between the connectivity

and edge-connectivity of a graph and its inserted graph. In particular,

if k(G1) = n and λ(G2) = m, then k(I(G1)) ≥ n and λ(I(G1)) ≥ 2n−2

while k(I(G2)) ≥ m and λ(I(G2)) ≥ 2m − 2.

2. Preliminaries

In this section at first we recall some definitions.

Definition 2.1. ([2]) A graph can be constructed by inserting a

new vertex on each edge of G, the resulting graph is called box graph of

G, denoted by B(G). For an edge e of G, e denote the vertex of B(G)

corresponding to the edge e.

The graph B(G) has the property that, there always exists a one-

one correspondence between the vertices and the elements of G such

that any two vertices of B(G) are adjacent if and only if the corre-

sponding elements of G are an edge and an incident vertex. Obvi-

ously, B(G) is a bipartite graph whose number of vertices is equal to

the number of elements of G. Moreover if VG = {v1, v2, · · · , vn} and

EG = {e1, e2, · · · , em} then VB(G) = {v1, v2, · · · , vn, e1, e2, · · · , em}.

Definition 2.2. ([2]) Let IG be the set of all inserted vertices in

B(G). A graph I(G) with vertex set IG is called the inserted graph

in which any two vertices are adjacent if they are joined by a path of

length two in B(G). Therefore, if EG = {e1, e2, · · · , em} then IG =

VI(G) = {e1, e2, · · · , em}.
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Fig. 1: Connectivity and edge-connectivity of a graph and its inserted graph

These concepts are illustrated for a graph G and its inserted graph

I(G) in the Fig. 1. Here
⊗

marked vertices are the newly inserted

vertices.
Now we review some results related to edge-connectivity and con-

nectivity, to which we shall have occasion to refer in what follows.

Characterizations of n-connected graphs and m-edge-connected graphs

are presented bellow ([3]).

Theorem 2.1. A graph G is n-connected (m-edge-connected) if and

only if between every pair of distinct vertices there exist at least n

disjoint (m edge-disjoint ) paths.

The following criterion for m-edge-connected graphs will be useful

in the proof of one of our results [4].

Theorem 2.2. A graph G is m-edge-connected if and only if for

every non-empty proper subset A of the vertex set VG of the graph G,

the number of edges joining A and VG − A is at least m.

The next observation is due to Whitney [5]. We write min deg G to

denote the smallest degree among the vertices of G.
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Theorem 2.3. For any graph G, k(G) ≤ λ(G) ≤ min deg G.

3. Connectivity and edge-connectivity of I(G)

In this section we investigate the relationship between the connec-

tivity and edge-connectivity of a graph and its inserted graph.

Theorem 3.1. If a graph G is m-edge-connected, m ≥ 2, then I(G)

is m-connected.

Proof. Let x and y be two arbitrary distinct vertices of I(G), where

G is a m-edge-connected graph with m ≥ 2 and let x = uu1 and

y = vv1 be those edges of G corresponding to the vertices x and y in

I(G). Consider the vertices u and v. Since G is m-edge-connected, by

Theorem 2.1 there exist m edge-disjoint paths Pi, 1 ≤ i ≤ m, joining

u and v. At most one of the path Pi contains x; however, those paths

which fail to contain x have their initial edge adjacent with x. Similarly,

at most one Pi contain y, but any such path not containing y has its

terminal edge adjacent with y. Corresponding to the paths Pi in G,

there are m paths Qi in I(G) formed by adjoining to I(Pi) the edges

uwi1 and wikv (if not already present), where wi1 and wik are the initial

and terminal vertices of Qi. Since the Pi are edge-disjoint, the Qi are

disjoint so that, by Theorem 2.1, I(G) is m-connected.

The following corollaries are immediate.

Corollary 3.2. If G is a graph for which λ(G) ≥ 2, then λ(G) ≤

k(I(G)).

Corollary 3.3. If G is n-connected, n ≥ 2, then I(G) is n-connected.

Theorem 3.4. If a graph G is m-edge-connected, then I(G) is (2m−

2)-edge-connected.

Proof. Assume that m ≥ 2 (the result is obvious for m = 1). Let

Y denote any nonempty proper subset of the edge set EG of G, thus

Y induces a nonempty proper subset Y of the vertex set VI(G), and let
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C [Y ] = {{y1, y2}|y1 ∈ Y, y2 ∈ EG − Y, y1 is adjacent to y2 in G}. For

each vertex u in G, denote by δ(u) the number of edges of Y incident

with u and by δ
′

(u) the number of edges of EG − Y incident with u.

If W = {u|δ(u) > 0, δ
′

(u) > 0}, then |C [Y ]| =
∑

w∈W
δ(w)δ

′

(w) is the

number of edges in I(G) joining vertices of Y with vertices of VI(G)−Y .

In order to conclude that I(G) is (2n − 2)-edge-connected, it sufficient

to show, by Theorem 2.2, that |C [Y ]| ≥ (2m − 2) for each C [Y ].

Since G is connected and Y is a non-empty proper subset of EG, it

follows that W is non-empty. At this vertex we distinguish two cases.

Case-1: The set W consists of a single vertex, say v. In this case,

the removal of the edges of Y incident with v necessarily disconnects

G as does the removal of the edges of EG − Y incident with v. Since G

cannot be disconnected by the deletion of fewer than m-edges, |C [Y ]| =

δ(v)δ
′

(v) ≥ m2 ≥ (2m − 2).

Case-2: The set W consists of at least two vertices. Here we have

|W | ≥ 2, so that |C [Y ]| ≥ |W |δ(u)δ
′

(u), where u ∈ W is so chosen

that δ(u)δ
′

(u) is minimum. Since δ(u) + δ
′

(u) ≥ m, by Theorem 2.3,

the minimum value of δ(u)δ
′

(u) is not less than m− 1; hence |C [Y ]| ≥

(2m − 2). This completes the proof.

Since λ(G) is the largest value of m for which a graph G is m-edge-

connected. Now we state the following:

Corollary 3.5. If G is a graph for which λ(G) = m, then λ(I(G)) ≥

(2m − 2).

If λ(G) = m and G contains two adjacent vertices, each of degree

m, then I(G) contains a vertices of degree 2m − 2, so by Theorem

2.3, λ(I(G)) ≤ (2m − 2). And then the above corollary implies that

λ(I(G)) = (2m − 2).

Conversely, suppose λ(I(G)) = (2m−2), where λ(G) = m. If m = 1,

G contains a single edge. For m ≥ 2, a non empty proper subset Y

of the edge set EG of G can be selected such that W = {u, v} ( if
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not, W = {u} for every non empty proper subset Y of EG implies

λ(I(G)) > (2m − 2)) and δ(u)δ
′

(u) = δ(v)δ
′

(v) = m − 1 (inasmuch

as each product is no less than m − 1 and their sum is 2m − 2). In

particular, this implies the degree of each of u and v is m. Since G is

connected, the set Y necessarily induces a connected subgraph of G for

otherwise W would contain more than two elements. If, in addition,

m ≥ 3, then u and v are adjacent. To see this, assume the contrary.

By Theorem 2.1, there exist at least three edge-disjoint paths joining u

and v. Now each such path must be completely contained with in Y or

EG −Y , let W contain more than two vertices, so that each of u and v

is incident with precisely one edge of Y or precisely one edge of EG−Y .

Thus G can be disconnected by the removal of two edges, violating the

hypothesis λ(I(G)) ≥ 3. We summarize these observations below.

Corollary 3.6. If G is a graph for which λ(G) = m 6= 2, then

λ(I(G)) ≥ (2m − 2) if and only if there exist two adjacent vertices in

G with degree m.

Corollary 3.6 cannot be extended to include m = 2 as illustrated in

Fig. 2.

One might well expect a result for n-connectedness analogous to

that obtained for m-edge-connectedness in Theorem 3.4; however the

following shows that Corollary 3.3 cannot be improved in general. Let

the graph Gn consist of two disjoint copies of complete graph Kn+1.
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Fig.2 : A graph G for which λ(I(G)) = 2λ(G) − 2 = 2 but containing
no adjacent vertices with degree λ(G)

whose vertices are labelled xi and yi, 0 ≤ i ≤ n, where in addition, the

edges ei = xiyi, 1 ≤ i ≤ n, are inserted. The graph Gn has connectivity

n (and so is n-connected) as does I(Gn) [and so is not n+1-connected].

Fig. 3 shows the case when n = 3.
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Fig. 3 : Graph G3 of the class of subgraph Gn for which k(I(Gn)) = k(Gn) = n

I(G3) :
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