JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **18**, No.1, April 2005

COMMON FIXED POINTS OF A WEAK-COMPATIBLE PAIR OF A SINGLE VALUED AND A MULTIVALUED MAPS IN D-METRIC SPACES

BIJENDRA SINGH* AND SHOBHA JAIN**

ABSTRACT. The object of this paper is to prove two unique common fixed point theorems for a pair of a set-valued map and a self map satisfying a general contractive condition using orbital concept and weak-compatibility of the pair. One of these results generalizes substantially, the result of Dhage, Jennifer and Kang [4]. Simultaneously, its implications for two maps and one map improves and generalizes the results of Dhage [3], and Rhoades [11]. All the results of this paper are new.

1. Introduction

The fixed point theory for the set-valued mappings is a major branch of set-valued analysis and at present a very extensive literature is available in this direction. Most of these results are extensions and generalizations of the celebrated fixed point theorem for set-valued maps first established by Nadler [10] in metric spaces. The common fixed point theorems for the pairs of self map and a set-valued map have been studied by Fisher [6, 7], Garegnani and Zanco [8] etc. under weaker versions of the commutativity condition.

Generalizing the notion of metric space, Dhage [2] introduced Dmetric space and proved the existence of unique fixed point of a self-map satisfying a contractive condition. Dealing with D-metric space Ahmad

Received by the editors on February 01, 2005.

²⁰⁰⁰ Mathematics Subject Classifications : Primary 54H25, 47H10.

Key words and phrases: *D*-metric space, weak-compatible maps, orbit, bounded orbit, unique common fixed point.

et. al. [1], Dhage [2, 3], Dhage et. al [5], Rhoades [11], Singh, Jain and Jain [12], and others made a significant contribution in fixed point theory of D-metric spaces while Veerapandi et. al. [13] established some fixed point theorems for set-valued maps in D-metric spaces. Recently Dhage, Jennifer and Kang [4] deal with some results for fixed points of a pair of coincidentally commuting set-valued map and a self map in a D-metric space which is being generalized by our results.

The first result of this paper establishes a unique common fixed point theorem in an unbounded and incomplete D-metric space. The second result of this paper is a unique common fixed point theorem for the pair of a self map and a set-valued map satisfying a general contractive condition under weak-compatibility of them. It uses using orbital concept for the domains of variables x, y and for the completeness and boundedness as well. The results of the said references of D-metric spaces are also generalized significantly in this paper.

2. Preliminaries

DEFINITION 2.1. ([2]) Let X be a non-empty set. A generalized metric (or *D*-metric) on X is a function from $X \times X \times X \to R^+$ (the set of non-negative real numbers) satisfying:

- (D-1) $\rho(x, y, z) = 0$ if and only if x = y = z,
- (D-2) $\rho(x, y, z) = \rho(y, x, z) = \cdots$,
- (D-3) $\rho(x, y, z) \le \rho(x, y, a) + \rho(x, a, z) + \rho(a, y, z), \forall x, y, z, a \in X.$

The pair (X, ρ) is called a *D*-metric space.

DEFINITION 2.2. ([2]) A sequence $\{x_n\}$ of points in a *D*-metric space (X, ρ) is said to be *D*-convergent to a point $x \in X$ if for $\epsilon > 0, \exists n_0 \in N$ such that $\forall m, n \geq n_0, \rho(x_m, x_n, x) \leq \epsilon$. This sequence is said to be *D*-Cauchy sequence if for $\epsilon > 0, \exists n_0 \in N$ such that $\forall m > n, p > m, n \geq n_0, \rho(x_n, x_m, x_p) \leq \epsilon.(X, \rho)$ is said to be complete if every *D*-Cauchy sequence in it converges to some point of *X*.

DEFINITION 2.3. Let F be a multivalued map on *D*-metric space (X, ρ) . Let $x_0 \in X$ be arbitrary. A sequence $\{x_n\}$ in X is said to be an orbit of F at x_0 denoted by $O(F, x_0)$ if $x_n \in F^n(x_0), \forall n \in N$. If F is a single- valued self map on X then for $x_0 \in X$, let $x_1 = Fx_0, x_2 =$ $Fx_1 = F^2x_0, \cdots, x_{n-1} = F^{n-1}x_0, \cdots$. Then the sequence $\{x_n\}$ is called the orbit of F at the point x_0 and is denoted by $O(F, x_0)$.

DEFINITION 2.4. Let F be a multivalued map on D-metric space (X, ρ) . An orbit $O(F, x_0)$ is said to be complete if every D-Cauchy sequence in it converges to an element of X.

DEFINITION 2.5. A subset A of a D -metric space (X, ρ) is said to be bounded if there exists M > 0 such that $\rho(u, v, w) \leq M, \forall u, v, w \in A$ and M is said to be a bound of it.

DEFINITION 2.6. ([13]) Let CB(X) be the collection of all non-empty bounded and closed subsets of a *D*-metric space (X, ρ) and $A, B, C \in CB(X)$. Let

 $\delta(A, B, C) = Sup \{ \rho(a, b, c) : a \in A, b \in B, c \in C \}, \text{ Then } (CB(X), \delta) \text{ is } a D \text{-metric space.}$

DEFINITION 2.7. Let F be a multivalued map on D-metric space (X, ρ) . A point $u \in X$ is said to be a fixed point of F if $u \in Fu$. Also for a sequence $\{x_n\} \in X$, if $\lim_{m,n\to\infty} \delta(Fx_m, Fx_n, z) = 0$, then we say $\{Fx_n\} \to z \in X$.

DEFINITION 2.8. ([4]) Let F be a multivalued map and g be a self map on D-metric space (X, ρ) . The pair (F, g) is said to be weakcompatible if $Fy = \{gy\}$, for some $y \in X$ implies $Fgy = \{gFy\}$.

Let Φ denote the class of functions $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ such that ϕ is upper semi-continuous, ϕ is non-decreasing, $\phi(t) < t$, for t > 0.

To prove the main results, we require the following proposition and lemma.

PROPOSITION 2.1. Let g be a self map in a D-metric space (X, ρ) and $F : X \to CB(X)$ such that $F(X) \subseteq g(X)$. For some $x_0 \in X$, define sequences $\{x_n\}$ and $\{y_n\}$ in X by

$$y_n = gx_n \in Fx_{n-1}, \forall n \in N.$$

Then

$$\{x_o, x_1, x_2, \dots\} = \{x_n\} \in O(g^{-1}F, x_0),$$

$$\{y_1, y_2, y_3, \dots\} = \{y_n\} \in O(Fg^{-1}, y_1), \text{ where } y_1 = Fx_0.$$

Proof. Since $gx_1 \in Fx_0$, we have $x_1 \in g^{-1}Fx_0$. Also, $gx_2 \in Fx_1$ gives $x_2 \in g^{-1}Fx_1 = (g^{-1}F)^2x_0$. Similarly, $gx_n \in Fx_{n-1}$ gives $x_n \in g^{-1}Fx_{n-1} = (g^{-1}F)^nx_0$. Again $y_1 = gx_1 \in Fx_0, y_2 = gx_2 \in Fx_1 \in F(g^{-1}Fx_0) = (Fg^{-1})Fx_0, y_3 = gx_3 \in Fx_2 \in F(g^{-1}F)^2x_0 = (Fg^{-1})^2Fx_0$. Similarly, $y_n \in (Fg^{-1})^{n-1}Fx_0$. □

Note that $\{y_n\} = \{y_1, y_2, y_3, \dots\} = O(Fg^{-1}, y_1)$, where $y_1 = Fx_0$, is said to be an (F/g)-orbit at x_0 . It is also written as $O(Fg^{-1}, Fx_0)$.

LEMMA 2.2. Let g be a self-map in a D-metric space (X, ρ) and $F: X \to CB(X)$ be such that $F(X) \subseteq g(X)$. For some $x_0 \in X$, and for some $\phi \in \Phi$, let

$$(2.1) \quad \delta(Fx, Fy, Fz) \leq \phi \quad Max \begin{pmatrix} \rho(gx, gy, gz), \delta(Fx, Fy, gz), \\ \delta(gx, Fx, gz), \delta(gy, Fy, gz), \\ \delta(gx, Fy, gz), \delta(gy, Fx, gz), \\ \delta(gx, gy, Fz), \delta(gx, Fx, Fz), \\ \delta(gy, Fy, Fz), \delta(gx, Fy, Fz), \\ \delta(gy, Fx, Fz) \end{pmatrix}$$

for all $x, y, z \in O(g^{-1}F, x_0)$.

Let $\{x_n\}$ and $\{y_n\}$ be sequences defined in X as above. Let $\{X_n\}$ be a sequence in CB(X) given by

$$y_n = gx_n \in Fx_{n-1} = X_n, \forall n \in N.$$

If $F(\{x_n\}) = \bigcup_{i \in N} X_i$ is bounded, then

(i) $\{y_n\}$ is a D- Cauchy sequence in $O(Fg^{-1}, Fx_0)$.

(*ii*) If δ is continuous in one variable, then $gx_n \to u$ implies $Fx_n \to \{u\}$.

Proof. (i) Define a positive real sequence
$$\{\gamma_n\}$$
 in \mathbb{R}^+ by
 $\gamma_i = Sup_{j,k\in N}\delta(X_i, X_{i+j}, X_{i+j+k}), \forall i \in N.$

Then $\gamma_i \geq 0$ and γ_i is a non-increasing sequence for all i. Each γ_i is finite as $\bigcup_{i \in N} X_i$ is bounded. Hence it tends to a limit, say, γ . In the following, we show that $\gamma = 0$. We have, using (2.1), for m > n, $\delta(X_n, X_{n+p}, X_m) = \delta(Fx_{n-1}, Fx_{n+p-1}, Fx_{m-1})$

$$\leq \phi \quad Max \begin{pmatrix} \rho(y_{n-1}, y_{n+p-1}, y_{m-1}), \delta(X_n, X_{n+p}, y_{m-1}), \\ \delta(y_{n-1}, X_n, y_{m-1}), \delta(y_{n+p-1}, X_{n+p}, y_{m-1}), \\ \delta(y_{n-1}, X_{n+p}, y_{m-1}), \delta(X_n, y_{n+p-1}, y_{m-1}), \\ \delta(y_{n-1}, y_{n+p-1}, X_m), \delta(y_{n-1}, X_n, X_m), \\ \delta(y_{n+p-1}, X_{n+p}, X_m), \delta(y_{n-1}, X_{n+p}, X_m), \\ \delta(X_n, y_{n+p-1}, X_m) \end{pmatrix} \\ \leq \phi \quad Max \begin{pmatrix} \delta(X_{n-1}, X_{n+p-1}, X_{m-1}), \delta(X_n, X_{n+p}, X_{m-1}), \\ \delta(X_{n-1}, X_n, X_{m-1}), \delta(X_n, X_{n+p}, X_{m-1}), \\ \delta(X_{n-1}, X_{n+p}, X_{m-1}), \delta(X_n, X_{n+p-1}, X_{m-1}), \\ \delta(X_{n-1}, X_{n+p-1}, X_m), \delta(X_{n-1}, X_{n+p}, X_{m-1}), \\ \delta(X_{n-1}, X_{n+p-1}, X_m), \delta(X_{n-1}, X_{n+p}, X_m), \\ \delta(X_{n+p-1}, X_{n+p}, X_m), \delta(X_{n-1}, X_{n+p}, X_m), \\ \delta(X_n, X_{n+p-1}, X_m) \end{pmatrix}$$

$$\leq \phi \quad Max(\gamma_{n-1}, \gamma_n, \gamma_{n+p-1}) = \phi \ (\gamma_{n-1}).$$

Thus

(1)
$$\delta(X_n, X_{n+p}, X_{n+p+t}) \le \phi(\gamma_{n-1})$$

Taking supremum over p and t, we get

$$\gamma_n \le \phi(\gamma_{n-1}).$$

Letting $n \to \infty$, we get

$$\gamma \leq \phi(\gamma) < \gamma, \text{ if } \gamma > 0,$$

which is a contradiction. Hence $\gamma = 0$, i.e., $\gamma_n \to 0$, as $n \to \infty$. Using (1),

$$\rho(y_n, y_{n+p}, y_{n+p+t}) \le \delta(X_n, X_{n+p}, X_m) \le \phi(\gamma_{n-1}).$$

Letting $n \to \infty$, we get

$$Lim_{n\to\infty} \rho(y_n, y_{n+p}, y_{n+p+t}) \le Lim_{n\to\infty} \phi(\gamma_{n-1}) = 0.$$

Hence $\{y_n\}$ is a *D*-Cauchy sequence in $O(Fg^{-1}, Fx_0)$. (ii) Let $gx_n \to u$. Using (1), $Lim_{n\to\infty} \ \delta(Fx_n, Fx_{n+p}, u) = Lim_{n\to\infty} \ \delta(Fx_n, Fx_{n+p}, gx_m)$ $\leq Lim_{n\to\infty} \ \delta(Fx_n, Fx_{n+p}, X_m),$ $\leq Lim_{n\to\infty} \ \delta(X_{n+1}, X_{n+p+1}, X_m),$ $\leq Lim_{n\to\infty} \ \phi(\gamma_n).$

Therefore, $Lim_{n\to\infty}\delta(Fx_n, Fx_{n+p}, u) = 0$, and we get $Fx_n \to \{u\}$ in the *D*-metric space $(B(X), \delta)$.

3. Main results

The following is a unique common fixed point theorem for a weakcompatible pair of multivalued map and a self-map, both non-continuous, on an unbounded and incomplete *D*-metric space.

THEOREM 3.1. Let g be a self-map in a D-metric space (X, ρ) and let $F: X \to CB(X)$ be such that $F(X) \subseteq g(X)$.

(3.1) For some $x_0 \in X$ and some $\phi \in \Phi$,

$$\delta(Fx, Fy, Fz) \leq \phi \ Max \begin{pmatrix} \rho(gx, gy, gz), \delta(Fx, Fy, gz), \delta(gx, Fx, gz), \\ \delta(gy, Fy, gz), \delta(gx, Fy, gz), \delta(gy, Fx, gz), \\ \delta(gx, gy, Fz), \delta(gx, Fx, Fz), \delta(gy, Fy, Fz), \\ \delta(gx, Fy, Fz), \delta(gy, Fx, Fz) \end{pmatrix}$$

for all $x, y \in O(g^{-1}F, x_0)$ and all $z \in X$.

(3.2) The pair (F, g) is weak-compatible.

As above, for some $x_0 \in X$, define sequences $\{x_n\}, \{y_n\}$ in X and $\{X_n\}$ in CB(X), by $y_n = gx_n \in Fx_{n-1} = X_n, \forall n \in N$. If, for some $r \in N, y_r = y_{r+1}$, then

(I) $y_r = y_{r+1} = y_{r+2} = \cdots = y_{r+k} = \cdots, \forall k \in N.$

(II) If $\alpha = y_{r+k}$ for all $k \in N$, then α is the unique common fixed point of F and g.

Proof. Let $y_r = y_{r+1}$. Then $gx_r = gx_{r+1}$. Let

(2)
$$\alpha = gx_{r+1} = gx_r \in Fx_{r+1}.$$

Step I. Using (2) and (3.1), we have

$$\delta(Fx_r, Fx_r, \alpha) = \delta(Fx_r, Fx_r, Fx_r)$$

$$\leq \phi \quad Max \begin{pmatrix} \rho(gx_r, gx_r, gx_r), \delta(Fx_r, Fx_r, gx_r), \delta(gx_r, Fx_r, gx_r), \\ \delta(gx_r, Fx_r, gx_r), \delta(gx_r, Fx_r, gx_r), \delta(gx_r, Fx_r, gx_r), \\ \delta(gx_r, gx_r, Fx_r), \delta(gx_r, Fx_r, Fx_r), \delta(gx_r, Fx_r, Fx_r), \\ \delta(gx_r, Fx_r, Fx_r), \delta(gx_r, Fx_r, Fx_r) \end{pmatrix}$$

$$\leq \phi \quad Max \left(0, \delta(Fx_r, Fx_r, \alpha), \delta(Fx_r, \alpha, \alpha) \right)$$

$$\leq \phi \left(\delta(Fx_r, Fx_r, \alpha) \right) \quad \text{if} \quad \delta(Fx_r, Fx_r, \alpha) > 0,$$
which is a contradiction. Therefore, $\delta(Fx_r, Fx_r, \alpha) = 0$, which gives
 $Fx_r = \{\alpha\}.$

Now, using (2), we have

$$(3) \qquad \qquad \{gx_r\} = Fx_r = \alpha$$

Since (F, g) is weak-compatible, we get

(4)
$$F\alpha = g\alpha.$$

Step II. Putting
$$x = \alpha, y = \alpha$$
 and $z = x_r$ in (3.1), we get

$$\delta(F\alpha, F\alpha, Fx_r) \le \phi \quad Max \begin{pmatrix} \rho(g\alpha, g\alpha, gx_r), \delta(F\alpha, F\alpha, gx_r), \\ \delta(g\alpha, F\alpha, gx_r), \delta(g\alpha, F\alpha, gx_r), \\ \delta(g\alpha, F\alpha, gx_r), \delta(g\alpha, F\alpha, gx_r), \\ \delta(g\alpha, g\alpha, Fx_r), \delta(g\alpha, F\alpha, Fx_r), \\ \delta(g\alpha, F\alpha, Fx_r), \delta(g\alpha, F\alpha, Fx_r), \\ \delta(g\alpha, F\alpha, Fx_r), \delta(g\alpha, F\alpha, Fx_r), \\ \delta(g\alpha, F\alpha, Fx_r) \end{pmatrix}.$$

Using (3) and (4), we have

$$\begin{split} \rho(g\alpha,g\alpha,\alpha) &\leq \phi(\rho(g\alpha,g\alpha,\alpha)) < \rho(g\alpha,g\alpha,\alpha), \quad \text{if } \rho(g\alpha,g\alpha,\alpha) > 0, \\ \text{which is not true. Hence } \rho(g\alpha,g\alpha,\alpha) = 0, \text{ which gives } g\alpha = \alpha. \text{ Thus } \\ F\alpha &= g\alpha = \alpha. \text{ Therefore, } \alpha \text{ is a common fixed point of } F \text{ and } g. \end{split}$$

Step III. Putting $x = \alpha, y = \alpha$ and $z = x_{r+1}$ in (3.1), we get

$$\delta(F\alpha, F\alpha, Fx_{r+1}) \leq \phi Max \begin{pmatrix} \rho(g\alpha, g\alpha, gx_{r+1}), \delta(F\alpha, F\alpha, gx_{r+1}), \\ \delta(g\alpha, F\alpha, gx_{r+1}), \delta(g\alpha, F\alpha, gx_{r+1}), \\ \delta(g\alpha, F\alpha, gx_{r+1}), \delta(g\alpha, F\alpha, gx_{r+1}), \\ \delta(g\alpha, g\alpha, Fx_{r+1}), \delta(g\alpha, F\alpha, Fx_{r+1}), \\ \delta(g\alpha, F\alpha, Fx_{r+1}), \delta(g\alpha, F\alpha, Fx_{r+1}), \\ \delta(g\alpha, F\alpha, Fx_{r+1}) \end{pmatrix}$$

implies

 $\delta(\alpha, \alpha, Fx_{r+1}) \le \phi \quad Max \left(\rho(\alpha, \alpha, gx_{r+1}), \delta(\alpha, \alpha, Fx_{r+1}) \right).$

Using (1), we have

$$\begin{split} \rho(\alpha, \alpha, Fx_{r+1}) &\leq \phi \; \left\{ (\delta(\alpha, \alpha, Fx_{r+1}) \right\} < \delta(\alpha, \alpha, Fx_{r+1}), \\ \text{if } \delta(\alpha, \alpha, Fx_{r+1}) > 0. \; \text{Thus } \delta(\alpha, \alpha, Fx_{r+1}) = 0, \text{ which gives } Fx_{r+1} = \\ \{\alpha\}. \; \text{Since } y_{r+2} \in Fx_{r+1}, \text{ we have } y_{r+2} = \alpha. \; \text{Therefore, } y_r = y_{r+1} = \\ y_{r+2} = \alpha. \end{split}$$

Similarly, we shall have $y_r = y_{r+1} = y_{r+2} = \cdots = \alpha$. Thus $y_{r+k} = \alpha$ for all $k \in N$.

Step IV. (Uniqueness) Let w be another common fixed point of F and g. Then

(5)
$$w = Fw = gw.$$

Putting $x = \alpha, y = \alpha$ and z = w in (3.1) and using (5), we get

$$\delta(F\alpha, F\alpha, Fw) \le \phi \quad Max \begin{pmatrix} \rho(g\alpha, g\alpha, gw), \delta(F\alpha, F\alpha, gw), \\ \delta(g\alpha, F\alpha, gw), \delta(g\alpha, F\alpha, gw), \\ \delta(g\alpha, F\alpha, gw), \delta(g\alpha, F\alpha, gw), \\ \delta(g\alpha, g\alpha, Fw), \delta(g\alpha, F\alpha, Fw), \\ \delta(g\alpha, F\alpha, Fw), \delta(g\alpha, F\alpha, Fw), \\ \delta(g\alpha, F\alpha, Fw) \end{pmatrix}$$

implies

 $\delta(\alpha, \alpha, w) \leq \phi(\delta(\alpha, \alpha, w)) < \delta(\alpha, \alpha, w),$ if $\delta(\alpha, \alpha, w) > 0$, which is a contradiction. Therefore, $\delta(\alpha, \alpha, w) = 0$, i.e., $\alpha = w$. Hence α is the unique common fixed point of F and g.

In [4], Dhage, Jennifer and Kang proved the following:

THEOREM 3.2. ([4]) Let X be a D -metric space and let $F : X \to CB(X)$ and $g : X \to X$ be two mappings satisfying, for some positive number r,

$$\delta^{r}(Fx, Fy, Fz) \leq \phi \quad Max \left(\begin{array}{c} \rho^{r}(gx, gy, gz), \delta^{r}(Fx, Fy, gz), \\ \delta^{r}(gx, Fx, gz), \delta^{r}(gy, Fy, gz), \\ \delta^{r}(gx, Fy, gz), \delta^{r}(gy, Fx, gz) \end{array} \right)$$

for all $x, y, z \in X$, where $\phi : R^+ \to R^+$ is non-decreasing, $\phi(t) < t, t > 0$, and $\sum \phi^n(t) < \infty$ for each $t \in R^+$. Further, suppose that

- (a) $F(X) \subseteq g(X),$
- (b) g(X) is bounded and complete,
- (c) $\{F, g\}$ is coincidentally commuting.

Then F and g have a unique fixed point $u \in X$ such that $Fu = \{u\} = gu$.

The following theorem generalizes the result of [4] significantly for a weak-compatible pair of a multivalued map and a self-map, on an unbounded and incomplete D-metric space.

THEOREM 3.3. Let g be a self map in a D-metric space (X, ρ) and $F: X \to CB(X)$ with δ continuous in two variables satisfying (3.1) and

$$(3.3) F(X) \subseteq g(X),$$

(3.4) one of F(X) or g(X) is complete,

(3.5) the pair (F, g) is weak compatible,

(3.6) there exists $x_0 \in X$ such that $F(\{x_n\}) = \bigcup_{i \in X} X_i$ is bounded, where $y_{n+1} = gx_{n+1} \in Fx_n = X_{n+1}$ for all $n \in N$. Then F and g have the unique common fixed point in X.

Proof. For $x_0 \in X$, construct sequences $\{x_n\}$ and $\{y_n\}$ in X such that $y_n = gx_n \in Fx_{n-1}, \forall n \in N$. Therefore, by Lemma 2.2, $\{y_n\} = \{gx_n\}$ is a D-Cauchy sequence in g(X).

CASE 1. (g(X) is complete) Since g(X) is complete,

(6)
$$y_n = gx_n \to u \in g(X).$$

Therefore, there exists $v \in X$ such that

(7)
$$u = gv$$

Step1. Putting $x = x_n, y = x_n, z = v$ in condition (3.1), we get $\delta(Fx_n, Fx_n, Fv)$

$$\leq \phi \quad Max \left(\begin{array}{l} \rho(gx_n, gx_n, gv), \delta(Fx_n, Fx_n, gv), \delta(gx_n, Fx_n, gv), \\ \delta(gx_n, Fx_n, gv), \delta(gx_n, Fx_n, gv), \delta(gx_n, Fx_n, gv), \\ \delta(gx_n, gx_n, Fv), \delta(gx_n, Fx_n, Fv), \delta(gx_n, Fx_n, Fv), \\ \delta(gx_n, Fx_n, Fv), \delta(gx_n, Fx_n, Fv) \end{array} \right)$$

Letting $n \to \infty$ and using (6), (7) and Lemma 2.2, we get $\delta(u, u, Fv) \leq \phi \delta(u, u, Fv) < \delta(u, u, Fv)$, if $\delta(u, u, Fv) > 0$, which is a contradiction. Thus $\delta(u, u, Fv) = 0$, which gives u = Fv. Hence u = gv = Fv. Since (F, g) is weak-compatible, we obtain

(8)
$$Fu = gu$$

Step 2. Putting $x = x_n, y = x_n and z = u$ in condition (3.1), we get $\delta(Fx_n, Fx_n, Fu)$

$$\leq \phi \quad Max \left(\begin{array}{l} \rho(gx_n, gx_n, gu), \delta(Fx_n, Fx_n, gu), \delta(gx_n, Fx_n, gu), \\ \delta(gx_n, Fx_n, gu), \delta(gx_n, Fx_n, gu), \delta(gx_n, Fx_n, gu), \\ \delta(gx_n, gx_n, Fu), \delta(gx_n, Fx_n, Fu), \delta(gx_n, Fx_n, Fu), \\ \delta(gx_n, Fx_n, Fu), \delta(gx_n, Fx_n, Fu) \end{array} \right).$$

Letting $n \to \infty$ and using (6), (8) and Lemma 2.2, we get $\delta(u, u, Fu) \leq \phi \delta(u, u, gu) < \delta(u, u, Fu)$, if $\delta(u, u, Fu) > 0$, which is a contradiction. Thus $\delta(u, u, Fu) = 0$, which gives u = Fu. Hence u = gu = Fu. Therefore, u is a common fixed point of F and g.

CASE 2. (When F(X) is complete) Since $y_n \in Fx_{n-1}, y_n \in F(X)$ for all $n \in N$. $\{y_n\}$ is a *D*-Cauchy sequence in F(X), which is complete. Therefore, $\{y_n\} \to u \in F(X) \subseteq g(X)$. Hence $u \in g(X)$, i.e., u = gvfor some $v \in X$. The rest follows as in Case 1.

Step 3. (Uniqueness) Let w be another common fixed point of F and g. Then

Since $y_n \to u, gx_n \to u$. Hence by using (*ii*) of Lemma 2.2,

Taking $x = x_n, y = x_n$ and z = w in condition (3.1), we get $\delta(Fx_n, Fx_n, Fw)$

$$\leq \phi \quad Max \begin{pmatrix} \rho(gx_n, gx_n, gw), \delta(Fx_n, Fx_n, gw), \delta(gx_n, Fx_n, gw), \\ \delta(gx_n, Fx_n, gw), \delta(gx_n, Fx_n, gw), \delta(gx_n, Fx_n, gw), \\ \delta(gx_n, gx_n, Fw), \delta(gx_n, Fx_n, Fw), \delta(gx_n, Fx_n, Fw), \\ \delta(gx_n, Fx_n, Fw), \delta(gx_n, Fx_n, Fw) \end{pmatrix}.$$

Letting $n \to \infty$ and using (6), (9) and Lemma 2.2, we get $\delta(u, u, w) \le \phi \delta(u, u, w) < \delta(u, u, w), \quad \text{if } \delta(u, u, w) > 0,$ which is a contradiction. Thus $\delta(u, u, w) = 0$, which gives u = w. Therefore, u is the unique common fixed point of F and g.

Note that (1) if (3.1) holds for all $x, y, z \in X$, then continuity of g at u implies continuity of F at u in view of the uniqueness of the fixed point and of (*ii*) of Lemma 2.2,

(2) the power of r in ρ and δ in the result of [4] gets cancelled throughout. Hence it is insignificant.

Remark 1. Theorem 3.3 generalizes the result of [4] in the following sense: (a) The contractive condition of theorem 3.3 contains eleven factors in the right. Therefore, the contraction taken in our Theorem 3.3 is more general than that of [4].

(b) The function ϕ taken in Theorem 3.3 is less restrictive than that of [5] as $\sum \phi^n(t)$ need not to be summable in our Theorem 3.3.

(c) In Theorem 3.3, $F(\{x_n\}) = \bigcup_i X_i = \bigcup_i F(x_{i-1}) = \bigcup_n F(x_n) \subseteq F(X) \subseteq g(X)$ is assumed to be bounded. Hence the domain g(X) of boundedness of [4] is larger than that one in our theorem 3.3.

In [3], Dhage has established the following result for two single valued maps:

THEOREM 3.4. ([3]) Let f and g be any two self-maps of a D-metric space X satisfying

 $\rho(fx, fy, fz) \le \lambda \rho(gx, gy, gz),$

for all $x, y, z \in X$ and for $0 \le \lambda < 1$. Further, suppose that

- $(a) \quad f(X) \subseteq g(X),$
- (b) any one of f(X) or g(X) is complete,
- (c) f and g are coincidentally commuting.

Then f and g have a unique common fixed point.

Taking F to be a single-valued map, we have the following corollary of Theorem 3.3:

COROLLARY 3.5. Let F and g be self-maps on a D-metric space (X, ρ) , where ρ is continuous in two variables satisfying (3.3), (3.4), (3.5), (3.6) and

 $\rho(Fx, Fy, Fz \le \phi \{\rho(gx, gy, gz)\}$

for all $x, y \in O(g^{-1}F, x_0), z \in X$. Then F and g have a unique common fixed point in X.

Proof. The result follows from Theorem 3.3, by restricting maximum to only first factor of (3.1).

Remark 2. Even Corollary 3.5 generalizes the result of [3] by taking $\phi(t) = \lambda t, \forall t \in \mathbb{R}^+$, for some $0 \leq \lambda < 1$. Generalization is in the sense of domains of variables x and y and non-summability of ϕ .

In [11], Rhoades proved the following:

THEOREM 3.6. ([11]) Let X be a complete and bounded D-metric space, and let f be a self map of X satisfying

$$\rho(fx, fy, fz) \le q Max \left(\begin{array}{c} \rho(x, y, z), \rho(fx, x, z), \rho(fy, y, z), \\ \rho(x, fy, z), \rho(y, fx, z), \end{array} \right)$$

for all $x, y, z \in X$, where $0 \le q < 1$. Then f has a unique fixed point p in X and f is continuous at p.

The following corollary of Theorem 3.3 is a significant generalization of it:

COROLLARY 3.7. Let F be a self map on a complete D-metric space (X, ρ) , in which ρ is continuous in two variables, such that for some $x_0 \in X$, orbit $O(F, x_0)$ is bounded and

$$\rho(Fx, Fy, Fz) \leq \phi \quad Max \begin{pmatrix} \rho(x, y, z), \rho(Fx, Fy, z), \rho(x, Fx, z), \\ \rho(y, Fy, z), \rho(x, Fy, z), \rho(y, Fx, z), \\ \rho(x, y, Fz), \rho(x, Fx, Fz), \\ \rho(y, Fy, Fz), \\ \rho(x, Fy, Fz), \rho(y, Fx, Fz) \end{pmatrix}$$

for all $x, y \in O(F, x_0)$ and all $z \in X$. Then F has a unique fixed point in X.

Proof. The result follows from Theorem 3.3 by taking g = I. Since F is a single valued, $\delta = \rho$.

Remark 3. The above corollary generalizes the result of [11] by taking $\phi(t) = \lambda t, \forall t \in \mathbb{R}^+$. Here,

(a) ϕ is less restrictive (not requiring summability) than q of [11].

(b) Contractive condition of Corollary 3.7 is more general than that of the contractive condition of the result of [11].

(c) Domains of x, y and of boundedness in above corollary is less than that of result of [11].

It is to be noted that the mentioned continuity of a *D*-metric ρ in two variables is necessary, as there are examples of *D*-metric spaces in which ρ is not continuous even in one variable.

References

- B. Ahmad, M. Ashraf and B.E. Rhoades, Fixed point theorems for expansive mappings in D-metric spaces, Indian J. Pure Appl. Math. 32 (2001), 1513–1518.
- B.C. Dhage, Generalized metric spaces and mappings with fixed points, Bull. Calcutta Math. Soc. 84 (1992), 329–336.
- B.C. Dhage, A common fixed point principle in D-metric spaces, Bull. Calcutta Math. Soc. 91 (1999), 475–480.

- B.C. Dhage, A. Jennifer Asha and S.M. Kang, On common fixed points of pairs of a single and a multivalued coincidentally commuting mappings in D-metric spaces, Internat. J. Math. Math. Sci. 40 (2003), 2519–2539.
- B.C. Dhage, A.M. Pathan and B.E. Rhoades, A general existence principle for fixed point theorem in D-metric spaces, Internat. J. Math. Math. Sci. 23 (2000), 441–448.
- B. Fisher, Set-valued mappings in metric spaces, Fund. Math. 112 (1981), 141– 145.
- B. Fisher, Fixed point of mappings and set-valued mappings, J. Univ. Kuwait Sci. 9 (1982), 175–180.
- G. Garegnani and C. Zanco, Fixed point of somehow contractive multi-valued mappings, Istit. Lombrrdo, Acad. Sci. Lett. Rend. A. 114 (1980), 133–148.
- G. Jungck and B.E. Rhoades, Fixed point for set-valued functions with out continuity, Indian J. Pure Appl. Math. 29 (1998), 227–238.
- S.B. Jr. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475–486.
- B.E. Rhoades, A fixed point theorem for generalized metric space, Internat. J. Math. Math. Sci. 19 (1996), 457–460.
- B. Singh, S. Jain and S. Jain, Semi-compatibility and fixed point theorems in an unbounded D-metric space, Internat. J. Math. Math. Sci. (to appear).
- T. Veerapandi and K. Chandrasekhara Rao, Fixed points in theorem of some multi-valued mapping in D-metric spaces, Bull. Calcutta Math. Soc. 87 (1995), 549–556.

School of Studies in Mathematics Vikram University UJJAIN-456010(M. P.), INDIA

** M. B. KHALSA COLLEGE RAJMOHALLA, INDORE (M. P.) INDIA *E-mail*: shobajain1@yahoo.com

^{*}