# COMMON FIXED POINTS OF A WEAK-COMPATIBLE PAIR OF A SINGLE VALUED AND A MULTIVALUED MAPS IN $D$-METRIC SPACES 

Bijendra Singh* and Shobha Jain**


#### Abstract

The object of this paper is to prove two unique common fixed point theorems for a pair of a set-valued map and a self map satisfying a general contractive condition using orbital concept and weak-compatibility of the pair. One of these results generalizes substantially, the result of Dhage, Jennifer and Kang [4]. Simultaneously, its implications for two maps and one map improves and generalizes the results of Dhage [3], and Rhoades [11]. All the results of this paper are new.


## 1. Introduction

The fixed point theory for the set-valued mappings is a major branch of set-valued analysis and at present a very extensive literature is available in this direction. Most of these results are extensions and generalizations of the celebrated fixed point theorem for set-valued maps first established by Nadler [10] in metric spaces. The common fixed point theorems for the pairs of self map and a set-valued map have been studied by Fisher [6, 7], Garegnani and Zanco [8] etc. under weaker versions of the commutativity condition.

Generalizing the notion of metric space, Dhage [2] introduced $D$ metric space and proved the existence of unique fixed point of a self-map satisfying a contractive condition. Dealing with $D$-metric space Ahmad

Received by the editors on February 01, 2005.
2000 Mathematics Subject Classifications : Primary 54H25, 47H10.
Key words and phrases: $D$-metric space, weak-compatible maps, orbit, bounded orbit, unique common fixed point.
et. al. [1], Dhage [2, 3], Dhage et. al [5], Rhoades [11], Singh, Jain and Jain [12], and others made a significant contribution in fixed point theory of $D$-metric spaces while Veerapandi et. al. [13] established some fixed point theorems for set-valued maps in $D$-metric spaces. Recently Dhage, Jennifer and Kang [4] deal with some results for fixed points of a pair of coincidentally commuting set-valued map and a self map in a $D$-metric space which is being generalized by our results.

The first result of this paper establishes a unique common fixed point theorem in an unbounded and incomplete $D$-metric space. The second result of this paper is a unique common fixed point theorem for the pair of a self map and a set-valued map satisfying a general contractive condition under weak-compatibility of them. It uses using orbital concept for the domains of variables $x, y$ and for the completeness and boundedness as well. The results of the said references of $D$-metric spaces are also generalized significantly in this paper.

## 2. Preliminaries

Definition 2.1. ([2]) Let $X$ be a non-empty set. A generalized metric (or $D$-metric) on $X$ is a function from $X \times X \times X \rightarrow R^{+}$(the set of non-negative real numbers) satisfying:
(D-1) $\rho(x, y, z)=0$ if and only if $x=y=z$,
(D-2) $\rho(x, y, z)=\rho(y, x, z)=\cdots$,
(D-3) $\rho(x, y, z) \leq \rho(x, y, a)+\rho(x, a, z)+\rho(a, y, z), \forall x, y, z, a \in X$.
The pair $(X, \rho)$ is called a $D$-metric space.

Definition 2.2. ([2]) A sequence $\left\{x_{n}\right\}$ of points in a $D$-metric space $(X, \rho)$ is said to be $D$-convergent to a point $x \in X$ if for $\epsilon>0, \exists n_{0} \in N$ such that $\forall m, n \geq n_{0}, \rho\left(x_{m}, x_{n}, x\right) \leq \epsilon$. This sequence is said to be $D$ Cauchy sequence if for $\epsilon>0, \exists n_{0} \in N$ such that $\forall m>n, p>m, n \geq$ $n_{0}, \rho\left(x_{n}, x_{m}, x_{p}\right) \leq \epsilon .(X, \rho)$ is said to be complete if every $D$-Cauchy sequence in it converges to some point of $X$.

Definition 2.3. Let F be a multivalued map on $D$-metric space $(X, \rho)$. Let $x_{0} \in X$ be arbitrary. A sequence $\left\{x_{n}\right\}$ in $X$ is said to be an orbit of $F$ at $x_{0}$ denoted by $O\left(F, x_{0}\right)$ if $x_{n} \in F^{n}\left(x_{0}\right), \forall n \in N$. If $F$ is a single- valued self map on X then for $x_{0} \in X$, let $x_{1}=F x_{0}, x_{2}=$ $F x_{1}=F^{2} x_{0}, \cdots, x_{n-1}=F^{n-1} x_{0}, \cdots$. Then the sequence $\left\{x_{n}\right\}$ is called the orbit of $F$ at the point $x_{0}$ and is denoted by $O\left(F, x_{0}\right)$.

Definition 2.4. Let $F$ be a multivalued map on $D$-metric space $(X, \rho)$. An orbit $O\left(F, x_{0}\right)$ is said to be complete if every $D$-Cauchy sequence in it converges to an element of $X$.

Definition 2.5. A subset $A$ of a $D$-metric space $(X, \rho)$ is said to be bounded if there exists $M>0$ such that $\rho(u, v, w) \leq M, \forall u, v, w \in A$ and $M$ is said to be a bound of it.

Definition 2.6. ([13]) Let $C B(X)$ be the collection of all non-empty bounded and closed subsets of a $D$-metric space $(X, \rho)$ and $A, B, C \in$ $C B(X)$. Let
$\delta(A, B, C)=\operatorname{Sup}\{\rho(a, b, c): a \in A, b \in B, c \in C\}$, Then $(C B(X), \delta)$ is a $D$-metric space.

Definition 2.7. Let $F$ be a multivalued map on $D$-metric space $(X, \rho)$. A point $u \in X$ is said to be a fixed point of $F$ if $u \in F u$. Also for a sequence $\left\{x_{n}\right\} \in X$, if $\operatorname{Lim}_{m, n \rightarrow \infty} \delta\left(F x_{m}, F x_{n}, z\right)=0$, then we say $\left\{F x_{n}\right\} \rightarrow z \in X$.

Definition 2.8. ([4]) Let $F$ be a multivalued map and $g$ be a self map on $D$-metric space $(X, \rho)$. The pair $(F, g)$ is said to be weakcompatible if $F y=\{g y\}$, for some $y \in X$ implies $F g y=\{g F y\}$.

Let $\Phi$ denote the class of functions $\phi: R^{+} \rightarrow R^{+}$such that $\phi$ is upper semi-continuous, $\phi$ is non-decreasing, $\phi(t)<t$, for $t>0$.

To prove the main results, we require the following proposition and lemma.

Proposition 2.1. Let $g$ be a self map in a $D$-metric space $(X, \rho)$ and $F: X \rightarrow C B(X)$ such that $F(X) \subseteq g(X)$. For some $x_{0} \in X$, define sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in $X$ by

$$
y_{n}=g x_{n} \in F x_{n-1}, \forall n \in N
$$

Then

$$
\begin{aligned}
& \left\{x_{o}, x_{1}, x_{2}, \cdots\right\}=\left\{x_{n}\right\} \in O\left(g^{-1} F, x_{0}\right) \\
& \left\{y_{1}, y_{2}, y_{3}, \cdots\right\}=\left\{y_{n}\right\} \in O\left(F g^{-1}, y_{1}\right), \text { where } y_{1}=F x_{0}
\end{aligned}
$$

Proof. Since $g x_{1} \in F x_{0}$, we have $x_{1} \in g^{-1} F x_{0}$. Also, $g x_{2} \in F x_{1}$ gives $x_{2} \in g^{-1} F x_{1}=\left(g^{-1} F\right)^{2} x_{0}$. Similarly, $g x_{n} \in F x_{n-1}$ gives $x_{n} \in$ $g^{-1} F x_{n-1}=\left(g^{-1} F\right)^{n} x_{0}$. Again $y_{1}=g x_{1} \in F x_{0}, y_{2}=g x_{2} \in F x_{1} \in$ $F\left(g^{-1} F x_{0}\right)=\left(F g^{-1}\right) F x_{0}, y_{3}=g x_{3} \in F x_{2} \in F\left(g^{-1} F\right)^{2} x_{0}=\left(F g^{-1}\right)^{2} F x_{0}$. Similarly, $y_{n} \in\left(F g^{-1}\right)^{n-1} F x_{0}$.

Note that $\left\{y_{n}\right\}=\left\{y_{1}, y_{2}, y_{3}, \cdots\right\}=O\left(F g^{-1}, y_{1}\right)$, where $y_{1}=F x_{0}$, is said to be an $(F / g)$-orbit at $x_{0}$. It is also written as $O\left(F g^{-1}, F x_{0}\right)$.

Lemma 2.2. Let $g$ be a self-map in a $D$-metric space $(X, \rho)$ and $F: X \rightarrow C B(X)$ be such that $F(X) \subseteq g(X)$. For some $x_{0} \in X$, and for some $\phi \in \Phi$, let

$$
\delta(F x, F y, F z) \leq \phi \quad \operatorname{Max}\left(\begin{array}{l}
\rho(g x, g y, g z), \delta(F x, F y, g z),  \tag{2.1}\\
\delta(g x, F x, g z), \delta(g y, F y, g z), \\
\delta(g x, F y, g z), \delta(g y, F x, g z), \\
\delta(g x, g y, F z), \delta(g x, F x, F z), \\
\delta(g y, F y, F z), \delta(g x, F y, F z), \\
\delta(g y, F x, F z)
\end{array}\right)
$$

for all $x, y, z \in O\left(g^{-1} F, x_{0}\right)$.
Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences defined in $X$ as above. Let $\left\{X_{n}\right\}$ be a sequence in $C B(X)$ given by

$$
y_{n}=g x_{n} \in F x_{n-1}=X_{n}, \forall n \in N .
$$

If $F\left(\left\{x_{n}\right\}\right)=\bigcup_{i \in N} X_{i}$ is bounded, then
(i) $\left\{y_{n}\right\}$ is a $D-$ Cauchy sequence in $O\left(F g^{-1}, F x_{0}\right)$.
(ii) If $\delta$ is continuous in one variable, then $g x_{n} \rightarrow u$ implies $F x_{n} \rightarrow$ $\{u\}$.

Proof. (i) Define a positive real sequence $\left\{\gamma_{n}\right\}$ in $R^{+}$by

$$
\gamma_{i}=\operatorname{Sup}_{j, k \in N} \delta\left(X_{i}, X_{i+j}, X_{i+j+k}\right), \forall i \in N
$$

Then $\gamma_{i} \geq 0$ and $\gamma_{i}$ is a non-increasing sequence for all i. Each $\gamma_{i}$ is finite as $\bigcup_{i \in N} X_{i}$ is bounded. Hence it tends to a limit, say, $\gamma$. In the following, we show that $\gamma=0$. We have, using (2.1), for $m>n$,

$$
\begin{aligned}
& \delta\left(X_{n}, X_{n+p}, X_{m}\right)=\delta\left(F x_{n-1}, F x_{n+p-1}, F x_{m-1}\right) \\
& \leq \phi \quad \operatorname{Max}\left(\begin{array}{l}
\rho\left(y_{n-1}, y_{n+p-1}, y_{m-1}\right), \delta\left(X_{n}, X_{n+p}, y_{m-1}\right), \\
\delta\left(y_{n-1}, X_{n}, y_{m-1}\right), \delta\left(y_{n+p-1}, X_{n+p}, y_{m-1}\right), \\
\delta\left(y_{n-1}, X_{n+p}, y_{m-1}\right), \delta\left(X_{n}, y_{n+p-1}, y_{m-1}\right), \\
\delta\left(y_{n-1}, y_{n+p-1}, X_{m}\right), \delta\left(y_{n-1}, X_{n}, X_{m}\right), \\
\delta\left(y_{n+p-1}, X_{n+p}, X_{m}\right), \delta\left(y_{n-1}, X_{n+p}, X_{m}\right), \\
\delta\left(X_{n}, y_{n+p-1}, X_{m}\right)
\end{array}\right) \\
& \leq\left(\begin{array}{l}
\delta\left(X_{n-1}, X_{n+p-1}, X_{m-1}\right), \delta\left(X_{n}, X_{n+p}, X_{m-1}\right), \\
\delta\left(X_{n-1}, X_{n}, X_{m-1}\right), \delta\left(X_{n+p-1}, X_{n+p}, X_{m-1}\right), \\
\delta\left(X_{n-1}, X_{n+p}, X_{m-1}\right), \delta\left(X_{n}, X_{n+p-1}, X_{m-1}\right), \\
\delta\left(X_{n-1}, X_{n+p-1}, X_{m}\right), \delta\left(X_{n-1}, X_{n}, X_{m}\right), \\
\delta\left(X_{n+p-1}, X_{n+p}, X_{m}\right), \delta\left(X_{n-1}, X_{n+p}, X_{m}\right), \\
\delta\left(X_{n}, X_{n+p-1}, X_{m}\right)
\end{array}\right) \\
& \leq \phi \operatorname{Max}\left(\gamma_{n-1}, \gamma_{n}, \gamma_{n+p-1}\right)=\phi\left(\gamma_{n-1}\right) .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\delta\left(X_{n}, X_{n+p}, X_{n+p+t}\right) \leq \phi\left(\gamma_{n-1}\right) \tag{1}
\end{equation*}
$$

Taking supremum over $p$ and $t$, we get

$$
\gamma_{n} \leq \phi\left(\gamma_{n-1}\right)
$$

Letting $n \rightarrow \infty$, we get

$$
\gamma \leq \phi(\gamma)<\gamma, \text { if } \gamma>0
$$

which is a contradiction. Hence $\gamma=0$, i.e., $\gamma_{n} \rightarrow 0$, as $n \rightarrow \infty$.
Using (1),

$$
\rho\left(y_{n}, y_{n+p}, y_{n+p+t}\right) \leq \delta\left(X_{n}, X_{n+p}, X_{m}\right) \leq \phi\left(\gamma_{n-1}\right)
$$

Letting $n \rightarrow \infty$, we get

$$
\operatorname{Lim}_{n \rightarrow \infty} \rho\left(y_{n}, y_{n+p}, y_{n+p+t}\right) \leq \operatorname{Lim}_{n \rightarrow \infty} \phi\left(\gamma_{n-1}\right)=0 .
$$

Hence $\left\{y_{n}\right\}$ is a $D$-Cauchy sequence in $O\left(F g^{-1}, F x_{0}\right)$.
(ii) Let $g x_{n} \rightarrow u$. Using (1),

$$
\begin{aligned}
\operatorname{Lim}_{n \rightarrow \infty} \delta\left(F x_{n}, F x_{n+p}, u\right) & =\operatorname{Lim}_{n \rightarrow \infty} \delta\left(F x_{n}, F x_{n+p}, g x_{m}\right) \\
& \leq \operatorname{Lim}_{n \rightarrow \infty} \delta\left(F x_{n}, F x_{n+p}, X_{m}\right) \\
& \leq \operatorname{Lim}_{n \rightarrow \infty} \delta\left(X_{n+1}, X_{n+p+1}, X_{m}\right) \\
& \leq \operatorname{Lim}_{n \rightarrow \infty} \phi\left(\gamma_{n}\right)
\end{aligned}
$$

Therefore, $\operatorname{Lim}_{n \rightarrow \infty} \delta\left(F x_{n}, F x_{n+p}, u\right)=0$, and we get $F x_{n} \rightarrow\{u\}$ in the $D$-metric space $(B(X), \delta)$.

## 3. Main results

The following is a unique common fixed point theorem for a weakcompatible pair of multivalued map and a self-map, both non-continuous, on an unbounded and incomplete $D$-metric space.

Theorem 3.1. Let $g$ be a self-map in a $D$-metric space $(X, \rho)$ and let $F: X \rightarrow C B(X)$ be such that $F(X) \subseteq g(X)$.
(3.1) For some $x_{0} \in X$ and some $\phi \in \Phi$, $\delta(F x, F y, F z) \leq \phi \operatorname{Max}\left(\begin{array}{l}\rho(g x, g y, g z), \delta(F x, F y, g z), \delta(g x, F x, g z), \\ \delta(g y, F y, g z), \delta(g x, F y, g z), \delta(g y, F x, g z), \\ \delta(g x, g y, F z), \delta(g x, F x, F z), \delta(g y, F y, F z), \\ \delta(g x, F y, F z), \delta(g y, F x, F z)\end{array}\right)$
for all $x, y \in O\left(g^{-1} F, x_{0}\right)$ and all $z \in X$.
(3.2) The pair $(F, g)$ is weak-compatible.

As above, for some $x_{0} \in X$, define sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ in $X$ and $\left\{X_{n}\right\}$ in $C B(X)$, by $y_{n}=g x_{n} \in F x_{n-1}=X_{n}, \forall n \in N$. If, for some $r \in N, y_{r}=y_{r+1}$, then
(I) $y_{r}=y_{r+1}=y_{r+2}=\cdots=y_{r+k}=\cdots, \forall k \in N$.
(II) If $\alpha=y_{r+k}$ for all $k \in N$, then $\alpha$ is the unique common fixed point of $F$ and $g$.

Proof. Let $y_{r}=y_{r+1}$. Then $g x_{r}=g x_{r+1}$. Let

$$
\begin{equation*}
\alpha=g x_{r+1}=g x_{r} \in F x_{r+1} . \tag{2}
\end{equation*}
$$

Step I. Using (2) and (3.1), we have

$$
\begin{aligned}
& \delta\left(F x_{r}, F x_{r}, \alpha\right)=\delta\left(F x_{r}, F x_{r}, F x_{r}\right) \\
& \leq \phi \quad \operatorname{Max}\left(\begin{array}{l}
\rho\left(g x_{r}, g x_{r}, g x_{r}\right), \delta\left(F x_{r}, F x_{r}, g x_{r}\right), \delta\left(g x_{r}, F x_{r}, g x_{r}\right), \\
\delta\left(g x_{r}, F x_{r}, g x_{r}\right), \delta\left(g x_{r}, F x_{r}, g x_{r}\right), \delta\left(g x_{r}, F x_{r}, g x_{r}\right) \\
\delta\left(g x_{r}, g x_{r}, F x_{r}\right), \delta\left(g x_{r}, F x_{r}, F x_{r}\right), \delta\left(g x_{r}, F x_{r}, F x_{r}\right), \\
\delta\left(g x_{r}, F x_{r}, F x_{r}\right), \delta\left(g x_{r}, F x_{r}, F x_{r}\right)
\end{array}\right) \\
& \leq \phi \quad \operatorname{Max}\left(0, \delta\left(F x_{r}, F x_{r}, \alpha\right), \delta\left(F x_{r}, \alpha, \alpha\right)\right) \\
& \leq \phi\left(\delta\left(F x_{r}, F x_{r}, \alpha\right)\right) \\
& <\delta\left(F x_{r}, F x_{r}, \alpha\right), \quad \text { if } \quad \delta\left(F x_{r}, F x_{r}, \alpha\right)>0,
\end{aligned}
$$

which is a contradiction. Therefore, $\delta\left(F x_{r}, F x_{r}, \alpha\right)=0$, which gives $F x_{r}=\{\alpha\}$.

Now, using (2), we have

$$
\begin{equation*}
\left\{g x_{r}\right\}=F x_{r}=\alpha \tag{3}
\end{equation*}
$$

Since $(F, g)$ is weak-compatible, we get

$$
\begin{equation*}
F \alpha=g \alpha . \tag{4}
\end{equation*}
$$

Step II. Putting $x=\alpha, y=\alpha$ and $z=x_{r}$ in (3.1), we get

$$
\delta\left(F \alpha, F \alpha, F x_{r}\right) \leq \phi \operatorname{Max}\left(\begin{array}{l}
\rho\left(g \alpha, g \alpha, g x_{r}\right), \delta\left(F \alpha, F \alpha, g x_{r}\right), \\
\delta\left(g \alpha, F \alpha, g x_{r}\right), \delta\left(g \alpha, F \alpha, g x_{r}\right), \\
\delta\left(g \alpha, F \alpha, g x_{r}\right), \delta\left(g \alpha, F \alpha, g x_{r}\right), \\
\delta\left(g \alpha, g \alpha, F x_{r}\right), \delta\left(g \alpha, F \alpha, F x_{r}\right), \\
\delta\left(g \alpha, F \alpha, F x_{r}\right), \delta\left(g \alpha, F \alpha, F x_{r}\right), \\
\delta\left(g \alpha, F \alpha, F x_{r}\right)
\end{array}\right) .
$$

Using (3) and (4), we have
$\rho(g \alpha, g \alpha, \alpha) \leq \phi(\rho(g \alpha, g \alpha, \alpha))<\rho(g \alpha, g \alpha, \alpha), \quad$ if $\rho(g \alpha, g \alpha, \alpha)>0$, which is not true. Hence $\rho(g \alpha, g \alpha, \alpha)=0$, which gives $g \alpha=\alpha$. Thus $F \alpha=g \alpha=\alpha$. Therefore, $\alpha$ is a common fixed point of $F$ and $g$.

Step III. Putting $x=\alpha, y=\alpha$ and $z=x_{r+1}$ in (3.1), we get

$$
\delta\left(F \alpha, F \alpha, F x_{r+1}\right) \leq \phi M a x\left(\begin{array}{l}
\rho\left(g \alpha, g \alpha, g x_{r+1}\right), \delta\left(F \alpha, F \alpha, g x_{r+1}\right), \\
\delta\left(g \alpha, F \alpha, g x_{r+1}\right), \delta\left(g \alpha, F \alpha, g x_{r+1}\right), \\
\delta\left(g \alpha, F \alpha, g x_{r+1}\right), \delta\left(g \alpha, F \alpha, g x_{r+1}\right), \\
\delta\left(g \alpha, g \alpha, F x_{r+1}\right), \delta\left(g \alpha, F \alpha, F x_{r+1}\right), \\
\delta\left(g \alpha, F \alpha, F x_{r+1}\right), \delta\left(g \alpha, F \alpha, F x_{r+1}\right), \\
\delta\left(g \alpha, F \alpha, F x_{r+1}\right)
\end{array}\right)
$$

implies
$\delta\left(\alpha, \alpha, F x_{r+1}\right) \leq \phi \quad \operatorname{Max}\left(\rho\left(\alpha, \alpha, g x_{r+1}\right), \delta\left(\alpha, \alpha, F x_{r+1}\right)\right)$.
Using (1), we have
$\rho\left(\alpha, \alpha, F x_{r+1}\right) \leq \phi\left\{\left(\delta\left(\alpha, \alpha, F x_{r+1}\right)\right\}<\delta\left(\alpha, \alpha, F x_{r+1}\right)\right.$,
if $\delta\left(\alpha, \alpha, F x_{r+1}\right)>0$. Thus $\delta\left(\alpha, \alpha, F x_{r+1}\right)=0$, which gives $F x_{r+1}=$ $\{\alpha\}$. Since $y_{r+2} \in F x_{r+1}$, we have $y_{r+2}=\alpha$. Therefore, $y_{r}=y_{r+1}=$ $y_{r+2}=\alpha$.

Similarly, we shall have $y_{r}=y_{r+1}=y_{r+2}=\cdots=\alpha$. Thus $y_{r+k}=\alpha$ for all $k \in N$.

Step IV. (Uniqueness) Let $w$ be another common fixed point of $F$ and $g$. Then

$$
\begin{equation*}
w=F w=g w . \tag{5}
\end{equation*}
$$

Putting $x=\alpha, y=\alpha$ and $z=w$ in (3.1) and using (5), we get

$$
\delta(F \alpha, F \alpha, F w) \leq \phi \quad \operatorname{Max}\left(\begin{array}{l}
\rho(g \alpha, g \alpha, g w), \delta(F \alpha, F \alpha, g w), \\
\delta(g \alpha, F \alpha, g w), \delta(g \alpha, F \alpha, g w), \\
\delta(g \alpha, F \alpha, g w), \delta(g \alpha, F \alpha, g w), \\
\delta(g \alpha, g \alpha, F w), \delta(g \alpha, F \alpha, F w), \\
\delta(g \alpha, F \alpha, F w), \delta(g \alpha, F \alpha, F w), \\
\delta(g \alpha, F \alpha, F w)
\end{array}\right)
$$

implies
$\delta(\alpha, \alpha, w) \leq \phi(\delta(\alpha, \alpha, w))<\delta(\alpha, \alpha, w), \quad$ if $\delta(\alpha, \alpha, w)>0$,
which is a contradiction. Therefore, $\delta(\alpha, \alpha, w)=0$, i.e., $\alpha=w$. Hence $\alpha$ is the unique common fixed point of $F$ and $g$.

In [4], Dhage, Jennifer and Kang proved the following:

Theorem 3.2. ([4]) Let $X$ be a $D$-metric space and let $F: X \rightarrow$ $C B(X)$ and $g: X \rightarrow X$ be two mappings satisfying, for some positive number $r$,
$\delta^{r}(F x, F y, F z) \leq \phi \quad \operatorname{Max}\left(\begin{array}{l}\rho^{r}(g x, g y, g z), \delta^{r}(F x, F y, g z), \\ \delta^{r}(g x, F x, g z), \delta^{r}(g y, F y, g z), \\ \delta^{r}(g x, F y, g z), \delta^{r}(g y, F x, g z)\end{array}\right)$
for all $x, y, z \in X$, where $\phi: R^{+} \rightarrow R^{+}$is non-decreasing, $\phi(t)<t, t>$ 0 , and $\sum \phi^{n}(t)<\infty$ for each $t \in R^{+}$. Further, suppose that
(a) $\quad F(X) \subseteq g(X)$,
(b) $\quad g(X)$ is bounded and complete,
(c) $\{F, g\}$ is coincidentally commuting.

Then $F$ and $g$ have a unique fixed point $u \in X$ such that $F u=\{u\}=$ gu.

The following theorem generalizes the result of [4] significantly for a weak-compatible pair of a multivalued map and a self-map, on an unbounded and incomplete $D$-metric space.

Theorem 3.3. Let $g$ be a self map in a $D$-metric space $(X, \rho)$ and $F: X \rightarrow C B(X)$ with $\delta$ continuous in two variables satisfying (3.1) and

$$
\begin{equation*}
F(X) \subseteq g(X) \tag{3.3}
\end{equation*}
$$ one of $F(X)$ or $g(X)$ is complete, the pair $(F, g)$ is weak compatible, there exists $x_{0} \in X$ such that $F\left(\left\{x_{n}\right\}\right)=\bigcup_{i \in X} X_{i}$ is bounded, where $y_{n+1}=g x_{n+1} \in F x_{n}=X_{n+1}$ for all $n \in N$.

Then $F$ and $g$ have the unique common fixed point in $X$.
Proof. For $x_{0} \in X$, construct sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in $X$ such that $y_{n}=g x_{n} \in F x_{n-1}, \forall n \in N$. Therefore, by Lemma 2.2, $\left\{y_{n}\right\}=$ $\left\{g x_{n}\right\}$ is a $D$-Cauchy sequence in $g(X)$.

CASE 1. $(g(X)$ is complete) Since $g(X)$ is complete,

$$
\begin{equation*}
y_{n}=g x_{n} \rightarrow u \in g(X) \tag{6}
\end{equation*}
$$

Therefore, there exists $v \in X$ such that

$$
\begin{equation*}
u=g v . \tag{7}
\end{equation*}
$$

Step1. Putting $x=x_{n}, y=x_{n}, z=v$ in condition (3.1), we get $\delta\left(F x_{n}, F x_{n}, F v\right)$
$\leq \phi \quad \operatorname{Max}\left(\begin{array}{l}\rho\left(g x_{n}, g x_{n}, g v\right), \delta\left(F x_{n}, F x_{n}, g v\right), \delta\left(g x_{n}, F x_{n}, g v\right), \\ \delta\left(g x_{n}, F x_{n}, g v\right), \delta\left(g x_{n}, F x_{n}, g v\right), \delta\left(g x_{n}, F x_{n}, g v\right), \\ \delta\left(g x_{n}, g x_{n}, F v\right), \delta\left(g x_{n}, F x_{n}, F v\right), \delta\left(g x_{n}, F x_{n}, F v\right), \\ \delta\left(g x_{n}, F x_{n}, F v\right), \delta\left(g x_{n}, F x_{n}, F v\right)\end{array}\right)$
Letting $n \rightarrow \infty$ and using (6), (7) and Lemma 2.2, we get
$\delta(u, u, F v) \leq \phi \delta(u, u, F v)<\delta(u, u, F v), \quad$ if $\delta(u, u, F v)>0$, which is a contradiction. Thus $\delta(u, u, F v)=0$, which gives $u=F v$. Hence $u=g v=F v$. Since $(F, g)$ is weak-compatible, we obtain

$$
\begin{equation*}
F u=g u . \tag{8}
\end{equation*}
$$

Step 2. Putting $x=x_{n}, y=x_{n} a n d z=u$ in condition (3.1), we get $\delta\left(F x_{n}, F x_{n}, F u\right)$
$\leq \phi \quad \operatorname{Max}\left(\begin{array}{l}\rho\left(g x_{n}, g x_{n}, g u\right), \delta\left(F x_{n}, F x_{n}, g u\right), \delta\left(g x_{n}, F x_{n}, g u\right), \\ \delta\left(g x_{n}, F x_{n}, g u\right), \delta\left(g x_{n}, F x_{n}, g u\right), \delta\left(g x_{n}, F x_{n}, g u\right), \\ \delta\left(g x_{n}, g x_{n}, F u\right), \delta\left(g x_{n}, F x_{n}, F u\right), \delta\left(g x_{n}, F x_{n}, F u\right), \\ \delta\left(g x_{n}, F x_{n}, F u\right), \delta\left(g x_{n}, F x_{n}, F u\right)\end{array}\right)$.
Letting $n \rightarrow \infty$ and using (6), (8) and Lemma 2.2, we get
$\delta(u, u, F u) \leq \phi \delta(u, u, g u)<\delta(u, u, F u), \quad$ if $\delta(u, u, F u)>0$,
which is a contradiction. Thus $\delta(u, u, F u)=0$, which gives $u=F u$. Hence $u=g u=F u$. Therefore, $u$ is a common fixed point of $F$ and $g$.

CASE 2. (When $F(X)$ is complete) Since $y_{n} \in F x_{n-1}, y_{n} \in F(X)$ for all $n \in N .\left\{y_{n}\right\}$ is a $D$-Cauchy sequence in $F(X)$, which is complete. Therefore, $\left\{y_{n}\right\} \rightarrow u \in F(X) \subseteq g(X)$. Hence $u \in g(X)$, i.e., $u=g v$ for some $v \in X$. The rest follows as in Case 1 .

Step 3. (Uniqueness) Let $w$ be another common fixed point of $F$ and $g$. Then

$$
\begin{equation*}
w=F w=g w . \tag{9}
\end{equation*}
$$

Since $y_{n} \rightarrow u, g x_{n} \rightarrow u$. Hence by using (ii) of Lemma 2.2,

$$
\begin{equation*}
F x_{n} \rightarrow\{u\} \tag{10}
\end{equation*}
$$

Taking $x=x_{n}, y=x_{n}$ and $z=w$ in condition (3.1), we get
$\delta\left(F x_{n}, F x_{n}, F w\right)$
$\leq \phi \quad \operatorname{Max}\left(\begin{array}{l}\rho\left(g x_{n}, g x_{n}, g w\right), \delta\left(F x_{n}, F x_{n}, g w\right), \delta\left(g x_{n}, F x_{n}, g w\right), \\ \delta\left(g x_{n}, F x_{n}, g w\right), \delta\left(g x_{n}, F x_{n}, g w\right), \delta\left(g x_{n}, F x_{n}, g w\right), \\ \delta\left(g x_{n}, g x_{n}, F w\right), \delta\left(g x_{n}, F x_{n}, F w\right), \delta\left(g x_{n}, F x_{n}, F w\right), \\ \delta\left(g x_{n}, F x_{n}, F w\right), \delta\left(g x_{n}, F x_{n}, F w\right)\end{array}\right)$.
Letting $n \rightarrow \infty$ and using (6), (9) and Lemma 2.2, we get
$\delta(u, u, w) \leq \phi \delta(u, u, w)<\delta(u, u, w), \quad$ if $\delta(u, u, w)>0$,
which is a contradiction. Thus $\delta(u, u, w)=0$, which gives $u=w$. Therefore, $u$ is the unique common fixed point of $F$ and $g$.

Note that (1) if (3.1) holds for all $x, y, z \in X$, then continuity of $g$ at $u$ implies continuity of $F$ at $u$ in view of the uniqueness of the fixed point and of (ii) of Lemma 2.2,
(2) the power of $r$ in $\rho$ and $\delta$ in the result of [4] gets cancelled throughout. Hence it is insignificant.

Remark 1. Theorem 3.3 generalizes the result of [4] in the following sense: (a) The contractive condition of theorem 3.3 contains eleven factors in the right. Therefore, the contraction taken in our Theorem 3.3 is more general than that of [4].
(b) The function $\phi$ taken in Theorem 3.3 is less restrictive than that of [5] as $\sum \phi^{n}(t)$ need not to be summable in our Theorem 3.3.
(c) In Theorem 3.3, $F\left(\left\{x_{n}\right\}\right)=\bigcup_{i} X_{i}=\bigcup_{i} F\left(x_{i-1}\right)=\bigcup_{n} F\left(x_{n}\right) \subseteq$ $F(X) \subseteq g(X)$ is assumed to be bounded. Hence the domain $g(X)$ of boundedness of [4] is larger than that one in our theorem 3.3.

In [3], Dhage has established the following result for two single valued maps:

Theorem 3.4. ([3]) Let $f$ and $g$ be any two self-maps of a $D$-metric space $X$ satisfying

$$
\rho(f x, f y, f z) \leq \lambda \rho(g x, g y, g z)
$$

for all $x, y, z \in X$ and for $0 \leq \lambda<1$. Further, suppose that
(a) $\quad f(X) \subseteq g(X)$,
(b) any one of $f(X)$ or $g(X)$ is complete,
(c) $\quad f$ and $g$ are coincidentally commuting.

Then $f$ and $g$ have a unique common fixed point.
Taking $F$ to be a single-valued map, we have the following corollary of Theorem 3.3:

Corollary 3.5. Let $F$ and $g$ be self-maps on a $D$-metric space $(X, \rho)$, where $\rho$ is continuous in two variables satisfying (3.3), (3.4), (3.5), (3.6) and

$$
\rho(F x, F y, F z \leq \phi\{\rho(g x, g y, g z)\}
$$

for all $x, y \in O\left(g^{-1} F, x_{0}\right), z \in X$. Then $F$ and $g$ have a unique common fixed point in $X$.

Proof. The result follows from Theorem 3.3, by restricting maximum to only first factor of (3.1).

Remark 2. Even Corollary 3.5 generalizes the result of [3] by taking $\phi(t)=\lambda t, \forall t \in R^{+}$, for some $0 \leq \lambda<1$. Generalization is in the sense of domains of variables $x$ and $y$ and non-summability of $\phi$.

In [11], Rhoades proved the following:
Theorem 3.6. ([11]) Let $X$ be a complete and bounded $D$-metric space, and let $f$ be a self map of $X$ satisfying
$\rho(f x, f y, f z) \leq q \operatorname{Max}\binom{\rho(x, y, z), \rho(f x, x, z), \rho(f y, y, z)}{,\rho(x, f y, z), \rho(y, f x, z)}$,
for all $x, y, z \in X$, where $0 \leq q<1$. Then $f$ has a unique fixed point $p$ in $X$ and $f$ is continuous at $p$.

The following corollary of Theorem 3.3 is a significant generalization of it:

Corollary 3.7. Let $F$ be a self map on a complete $D$-metric space $(X, \rho)$, in which $\rho$ is continuous in two variables, such that for some $x_{0} \in X$, orbit $O\left(F, x_{0}\right)$ is bounded and

$$
\rho(F x, F y, F z) \leq \phi \operatorname{Max}\left(\begin{array}{l}
\rho(x, y, z), \rho(F x, F y, z), \rho(x, F x, z), \\
\rho(y, F y, z), \rho(x, F y, z), \rho(, F x, z), \\
\rho(x, y, F z), \rho(x, F x, F z), \\
\rho(y, F y, F z), \\
\rho(x, F y, F z), \rho(y, F x, F z)
\end{array}\right)
$$

for all $x, y \in O\left(F, x_{0}\right)$ and all $z \in X$. Then $F$ has a unique fixed point in $X$.

Proof. The result follows from Theorem 3.3 by taking $g=I$. Since $F$ is a single valued, $\delta=\rho$.

Remark 3. The above corollary generalizes the result of [11] by taking $\phi(t)=\lambda t, \forall t \in R^{+}$. Here,
(a) $\quad \phi$ is less restrictive (not requiring summability) than $q$ of [11].
(b) Contractive condition of Corollary 3.7 is more general than that of the contractive condition of the result of [11].
(c) Domains of $x, y$ and of boundedness in above corollary is less than that of result of [11].

It is to be noted that the mentioned continuity of a $D$-metric $\rho$ in two variables is necessary, as there are examples of $D$-metric spaces in which $\rho$ is not continuous even in one variable.

## References

1. B. Ahmad, M. Ashraf and B.E. Rhoades, Fixed point theorems for expansive mappings in D-metric spaces, Indian J. Pure Appl. Math. 32 (2001), 1513-1518.
2. B.C. Dhage, Generalized metric spaces and mappings with fixed points, Bull. Calcutta Math. Soc. 84 (1992), 329-336.
3. B.C. Dhage, $A$ common fixed point principle in D-metric spaces, Bull. Calcutta Math. Soc. 91 (1999), 475-480.
4. B.C. Dhage, A. Jennifer Asha and S.M. Kang, On common fixed points of pairs of a single and a multivalued coincidentally commuting mappings in $D$-metric spaces, Internat. J. Math. Math. Sci. 40 (2003), 2519-2539.
5. B.C. Dhage, A.M. Pathan and B.E. Rhoades, A general existence principle for fixed point theorem in D-metric spaces, Internat. J. Math. Math. Sci. 23 (2000), 441-448.
6. B. Fisher, Set-valued mappings in metric spaces, Fund. Math. 112 (1981), 141145.
7. B. Fisher, Fixed point of mappings and set-valued mappings, J. Univ. Kuwait Sci. 9 (1982), 175-180.
8. G. Garegnani and C. Zanco, Fixed point of somehow contractive multi-valued mappings, Istit. Lombrrdo, Acad. Sci. Lett. Rend. A. 114 (1980), 133-148.
9. G. Jungck and B.E. Rhoades, Fixed point for set-valued functions with out continuity, Indian J. Pure Appl. Math. 29 (1998), 227-238.
10. S.B. Jr. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-486.
11. B.E. Rhoades, A fixed point theorem for generalized metric space, Internat. J. Math. Math. Sci. 19 (1996), 457-460.
12. B. Singh, S. Jain and S. Jain, Semi-compatibility and fixed point theorems in an unbounded D-metric space, Internat. J. Math. Math. Sci. (to appear).
13. T. Veerapandi and K. Chandrasekhara Rao, Fixed points in theorem of some multi-valued mapping in D-metric spaces, Bull. Calcutta Math. Soc. 87 (1995), 549-556.

* 

School of Studies in Mathematics
Vikram University
UJjain-456010(M. P.), India
**
M. B. Khalsa College

Rajmohalla, Indore (M. P.)
InDIA
E-mail: shobajain1@yahoo.com

