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Abstract. The object of this paper is to prove two unique common

fixed point theorems for a pair of a set-valued map and a self map

satisfying a general contractive condition using orbital concept and

weak-compatibility of the pair. One of these results generalizes sub-

stantially, the result of Dhage, Jennifer and Kang [4]. Simultaneously,

its implications for two maps and one map improves and generalizes

the results of Dhage [3], and Rhoades [11]. All the results of this

paper are new.

1. Introduction

The fixed point theory for the set-valued mappings is a major branch

of set-valued analysis and at present a very extensive literature is avail-

able in this direction. Most of these results are extensions and general-

izations of the celebrated fixed point theorem for set-valued maps first

established by Nadler [10] in metric spaces. The common fixed point

theorems for the pairs of self map and a set-valued map have been

studied by Fisher [6, 7], Garegnani and Zanco [8] etc. under weaker

versions of the commutativity condition.

Generalizing the notion of metric space, Dhage [2] introduced D-

metric space and proved the existence of unique fixed point of a self-map

satisfying a contractive condition. Dealing with D-metric space Ahmad
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et. al. [1], Dhage [2, 3], Dhage et. al [5], Rhoades [11], Singh, Jain and

Jain [12], and others made a significant contribution in fixed point the-

ory of D-metric spaces while Veerapandi et. al. [13] established some

fixed point theorems for set-valued maps in D-metric spaces. Recently

Dhage, Jennifer and Kang [4] deal with some results for fixed points of

a pair of coincidentally commuting set-valued map and a self map in a

D-metric space which is being generalized by our results.

The first result of this paper establishes a unique common fixed point

theorem in an unbounded and incomplete D-metric space. The second

result of this paper is a unique common fixed point theorem for the

pair of a self map and a set-valued map satisfying a general contrac-

tive condition under weak-compatibility of them. It uses using orbital

concept for the domains of variables x, y and for the completeness and

boundedness as well. The results of the said references of D-metric
spaces are also generalized significantly in this paper.

2. Preliminaries

Definition 2.1. ([2]) Let X be a non-empty set. A generalized

metric (or D-metric) on X is a function from X × X × X → R+ (the

set of non-negative real numbers) satisfying:

(D-1) ρ(x, y, z) = 0 if and only if x = y = z,

(D-2) ρ(x, y, z) = ρ(y, x, z) = · · · ,

(D-3) ρ(x, y, z) ≤ ρ(x, y, a) + ρ(x, a, z) + ρ(a, y, z), ∀x, y, z, a ∈ X.

The pair (X, ρ) is called a D-metric space.

Definition 2.2. ([2]) A sequence {xn} of points in a D-metric space

(X, ρ) is said to be D-convergent to a point x ∈ X if for ǫ > 0, ∃n0 ∈ N

such that ∀m, n ≥ n0, ρ(xm, xn, x) ≤ ǫ. This sequence is said to be D-

Cauchy sequence if for ǫ > 0, ∃n0 ∈ N such that ∀m > n, p > m, n ≥

n0, ρ(xn, xm, xp) ≤ ǫ.(X, ρ) is said to be complete if every D-Cauchy

sequence in it converges to some point of X.
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Definition 2.3. Let F be a multivalued map on D-metric space

(X, ρ). Let x0 ∈ X be arbitrary. A sequence {xn} in X is said to be

an orbit of F at x0 denoted by O(F, x0) if xn ∈ F n(x0), ∀n ∈ N . If F

is a single- valued self map on X then for x0 ∈ X, let x1 = Fx0, x2 =

Fx1 = F 2x0, · · · , xn−1 = F n−1x0, · · · . Then the sequence {xn} is called

the orbit of F at the point x0 and is denoted by O(F, x0).

Definition 2.4. Let F be a multivalued map on D-metric space

(X, ρ). An orbit O(F, x0) is said to be complete if every D-Cauchy

sequence in it converges to an element of X.

Definition 2.5. A subset A of a D -metric space (X, ρ) is said to be

bounded if there exists M > 0 such that ρ(u, v, w) ≤ M, ∀u, v, w ∈ A

and M is said to be a bound of it.

Definition 2.6. ([13]) Let CB(X) be the collection of all non-empty

bounded and closed subsets of a D-metric space (X, ρ) and A, B, C ∈

CB(X) . Let

δ(A, B, C) = Sup {ρ(a, b, c) : a ∈ A, b ∈ B, c ∈ C}, Then (CB(X), δ) is

a D-metric space.

Definition 2.7. Let F be a multivalued map on D -metric space

(X, ρ). A point u ∈ X is said to be a fixed point of F if u ∈ Fu. Also

for a sequence {xn} ∈ X, if Limm,n→∞δ(Fxm, Fxn, z) = 0, then we say

{Fxn} → z ∈ X.

Definition 2.8. ([4]) Let F be a multivalued map and g be a self

map on D-metric space (X, ρ). The pair (F, g) is said to be weak-

compatible if Fy = {gy}, for some y ∈ X implies Fgy = {gFy}.

Let Φ denote the class of functions φ : R+ → R+ such that φ is

upper semi-continuous, φ is non-decreasing, φ(t) < t, for t > 0.

To prove the main results, we require the following proposition and

lemma.
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Proposition 2.1. Let g be a self map in a D-metric space (X, ρ)

and F : X → CB(X) such that F (X) ⊆ g(X). For some x0 ∈ X,

define sequences {xn} and {yn} in X by

yn = gxn ∈ Fxn−1, ∀n ∈ N .

Then

{xo, x1, x2, · · · } = {xn} ∈ O(g−1F, x0),

{y1, y2, y3, · · · } = {yn} ∈ O(Fg−1, y1), where y1 = Fx0.

Proof. Since gx1 ∈ Fx0, we have x1 ∈ g−1Fx0. Also, gx2 ∈ Fx1

gives x2 ∈ g−1Fx1 = (g−1F )2x0. Similarly, gxn ∈ Fxn−1 gives xn ∈

g−1Fxn−1 = (g−1F )nx0. Again y1 = gx1 ∈ Fx0, y2 = gx2 ∈ Fx1 ∈

F (g−1Fx0) = (Fg−1)Fx0, y3 = gx3 ∈ Fx2 ∈ F (g−1F )2x0 = (Fg−1)2Fx0.

Similarly, yn ∈ (Fg−1)n−1Fx0.

Note that {yn} = {y1, y2, y3, · · · } = O(Fg−1, y1), where y1 = Fx0, is

said to be an (F/g)-orbit at x0. It is also written as O(Fg−1, Fx0).

Lemma 2.2. Let g be a self-map in a D-metric space (X, ρ) and

F : X → CB(X) be such that F (X) ⊆ g(X). For some x0 ∈ X, and

for some φ ∈ Φ, let

(2.1) δ(Fx, Fy, Fz) ≤ φ Max















ρ(gx, gy, gz), δ(Fx, Fy, gz),
δ(gx, Fx, gz), δ(gy, Fy, gz),
δ(gx, F y, gz), δ(gy, Fx, gz),
δ(gx, gy, F z), δ(gx, Fx, Fz),
δ(gy, F y, F z), δ(gx, Fy,F z),
δ(gy, Fx, F z)















for all x, y, z ∈ O(g−1F, x0).

Let {xn} and {yn} be sequences defined in X as above. Let {Xn}

be a sequence in CB(X) given by

yn = gxn ∈ Fxn−1 = Xn, ∀n ∈ N.

If F ({xn}) =
⋃

i∈N Xi is bounded, then

(i) {yn} is a D− Cauchy sequence in O(Fg−1, Fx0).

(ii) If δ is continuous in one variable, then gxn → u implies Fxn →

{u}.
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Proof. (i) Define a positive real sequence {γn} in R+ by

γi = Supj,k∈Nδ(Xi, Xi+j , Xi+j+k), ∀i ∈ N .

Then γi ≥ 0 and γi is a non-increasing sequence for all i. Each γi is

finite as
⋃

i∈N Xi is bounded. Hence it tends to a limit, say, γ. In the

following, we show that γ = 0. We have, using (2.1), for m > n,

δ(Xn, Xn+p, Xm) = δ(Fxn−1, Fxn+p−1, Fxm−1)

≤ φ Max















ρ(yn−1, yn+p−1, ym−1), δ(Xn, Xn+p, ym−1),
δ(yn−1, Xn, ym−1), δ(yn+p−1, Xn+p, ym−1),
δ(yn−1, Xn+p, ym−1), δ(Xn, yn+p−1, ym−1),
δ(yn−1, yn+p−1, Xm), δ(yn−1, Xn, Xm),
δ(yn+p−1, Xn+p, Xm), δ(yn−1, Xn+p, Xm),
δ(Xn, yn+p−1, Xm)















≤ φ Max















δ(Xn−1, Xn+p−1, Xm−1), δ(Xn, Xn+p, Xm−1),
δ(Xn−1, Xn, Xm−1), δ(Xn+p−1, Xn+p, Xm−1),
δ(Xn−1, Xn+p, Xm−1), δ(Xn, Xn+p−1, Xm−1),
δ(Xn−1, Xn+p−1, Xm), δ(Xn−1, Xn, Xm),
δ(Xn+p−1, Xn+p, Xm), δ(Xn−1, Xn+p, Xm),
δ(Xn, Xn+p−1, Xm)















≤ φ Max(γn−1, γn, γn+p−1) = φ (γn−1).

Thus

(1) δ(Xn, Xn+p, Xn+p+t) ≤ φ(γn−1)

Taking supremum over p and t, we get

γn ≤ φ(γn−1).

Letting n → ∞, we get

γ ≤ φ(γ) < γ, if γ > 0,

which is a contradiction. Hence γ = 0, i.e., γn → 0, as n → ∞.

Using (1),

ρ(yn, yn+p, yn+p+t) ≤ δ(Xn, Xn+p, Xm) ≤ φ(γn−1).

Letting n → ∞, we get

Limn→∞ ρ(yn, yn+p, yn+p+t) ≤ Limn→∞φ(γn−1) = 0.
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Hence {yn} is a D-Cauchy sequence in O(Fg−1, Fx0).

(ii) Let gxn → u. Using (1),

Limn→∞ δ(Fxn, Fxn+p, u) = Limn→∞ δ(Fxn, Fxn+p, gxm)

≤ Limn→∞δ(Fxn, Fxn+p, Xm),

≤ Limn→∞δ(Xn+1, Xn+p+1, Xm) ,

≤ Limn→∞φ(γn).

Therefore, Limn→∞δ(Fxn, Fxn+p, u) = 0, and we get Fxn → {u} in

the D-metric space (B(X), δ).

3. Main results

The following is a unique common fixed point theorem for a weak-

compatible pair of multivalued map and a self-map, both non-continuous,

on an unbounded and incomplete D-metric space.

Theorem 3.1. Let g be a self-map in a D-metric space (X, ρ) and

let F : X → CB(X) be such that F (X) ⊆ g(X).

(3.1) For some x0 ∈ X and some φ ∈ Φ ,

δ(Fx, Fy, F z) ≤ φ Max









ρ(gx, gy, gz), δ(Fx, Fy, gz), δ(gx,Fx, gz),
δ(gy, F y, gz), δ(gx, F y, gz), δ(gy,Fx, gz),
δ(gx, gy, F z), δ(gx, Fx, F z), δ(gy, F y, Fz),
δ(gx, F y, F z), δ(gy,Fx, F z)









for all x, y ∈ O(g−1F, x0) and all z ∈ X.

(3.2) The pair (F, g) is weak-compatible.

As above, for some x0 ∈ X, define sequences {xn} , {yn} in X and

{Xn} in CB(X), by yn = gxn ∈ Fxn−1 = Xn, ∀n ∈ N . If, for some

r ∈ N, yr = yr+1, then

(I) yr = yr+1 = yr+2 = · · · = yr+k = · · · , ∀k ∈ N .

(II) If α = yr+k for all k ∈ N , then α is the unique common fixed

point of F and g.

Proof. Let yr = yr+1. Then gxr = gxr+1. Let

(2) α = gxr+1 = gxr ∈ Fxr+1.
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Step I. Using (2) and (3.1), we have

δ(Fxr, Fxr, α) = δ(Fxr, Fxr, Fxr)

≤ φ Max









ρ(gxr, gxr, gxr), δ(Fxr, Fxr, gxr), δ(gxr, Fxr, gxr),
δ(gxr, Fxr, gxr), δ(gxr, Fxr, gxr), δ(gxr, Fxr, gxr),
δ(gxr, gxr, Fxr), δ(gxr, Fxr, Fxr), δ(gxr, Fxr, Fxr),
δ(gxr, Fxr, Fxr), δ(gxr, Fxr, Fxr)









≤ φ Max
(

0, δ(Fxr, Fxr, α), δ(Fxr, α, α)
)

≤ φ
(

δ(Fxr, Fxr, α)
)

< δ(Fxr, Fxr, α) , if δ(Fxr, Fxr, α) > 0,

which is a contradiction. Therefore, δ(Fxr, Fxr, α) = 0, which gives

Fxr = {α}.

Now, using (2), we have

(3) {gxr} = Fxr = α

Since (F, g) is weak-compatible, we get

(4) Fα = gα.

Step II. Putting x = α, y = α and z = xr in (3.1), we get

δ(Fα, Fα, Fxr) ≤ φ Max















ρ(gα, gα, gxr), δ(Fα, Fα, gxr),
δ(gα, Fα, gxr), δ(gα, Fα, gxr),
δ(gα, Fα, gxr), δ(gα, Fα, gxr),
δ(gα, gα, Fxr), δ(gα, Fα, Fxr),
δ(gα, Fα, Fxr), δ(gα, Fα, Fxr),
δ(gα, Fα, Fxr)















.

Using (3) and (4), we have

ρ(gα, gα, α) ≤ φ(ρ(gα, gα, α)) < ρ(gα, gα, α), if ρ(gα, gα, α) > 0,

which is not true. Hence ρ(gα, gα, α) = 0, which gives gα = α. Thus

Fα = gα = α. Therefore, α is a common fixed point of F and g.
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Step III. Putting x = α, y = α and z = xr+1 in (3.1), we get

δ(Fα, Fα, Fxr+1) ≤ φMax















ρ(gα, gα, gxr+1), δ(Fα, Fα, gxr+1),
δ(gα, Fα, gxr+1), δ(gα, Fα, gxr+1),
δ(gα, Fα, gxr+1), δ(gα, Fα, gxr+1),
δ(gα, gα, Fxr+1), δ(gα, Fα, Fxr+1),
δ(gα, Fα, Fxr+1), δ(gα, Fα, Fxr+1),
δ(gα, Fα, Fxr+1)















implies

δ(α, α, Fxr+1) ≤ φ Max
(

ρ(α, α, gxr+1), δ(α, α, Fxr+1)
)

.

Using (1), we have

ρ(α, α, Fxr+1) ≤ φ {(δ(α, α, Fxr+1)} < δ(α, α, Fxr+1),

if δ(α, α, Fxr+1) > 0. Thus δ(α, α, Fxr+1) = 0, which gives Fxr+1 =

{α}. Since yr+2 ∈ Fxr+1, we have yr+2 = α. Therefore, yr = yr+1 =
yr+2 = α.

Similarly, we shall have yr = yr+1 = yr+2 = · · · = α. Thus yr+k = α

for all k ∈ N .

Step IV. (Uniqueness) Let w be another common fixed point of F

and g. Then

(5) w = Fw = gw.

Putting x = α, y = α and z = w in (3.1) and using (5), we get

δ(Fα, Fα, Fw) ≤ φ Max















ρ(gα, gα, gw), δ(Fα, Fα, gw),
δ(gα, Fα, gw), δ(gα, Fα, gw),
δ(gα, Fα, gw), δ(gα, Fα, gw),
δ(gα, gα, Fw), δ(gα, Fα, Fw),
δ(gα, Fα, Fw), δ(gα, Fα, Fw),
δ(gα, Fα, Fw)















implies

δ(α, α, w) ≤ φ(δ(α, α, w)) < δ(α, α, w), if δ(α, α, w) > 0,

which is a contradiction. Therefore, δ(α, α, w) = 0, i.e., α = w. Hence

α is the unique common fixed point of F and g.

In [4], Dhage, Jennifer and Kang proved the following:
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Theorem 3.2. ([4]) Let X be a D -metric space and let F : X →

CB(X) and g : X → X be two mappings satisfying, for some positive

number r,

δr(Fx, Fy, F z) ≤ φ Max





ρr(gx, gy, gz), δr(Fx, Fy, gz),
δr(gx, Fx, gz), δr(gy, F y, gz),
δr(gx, F y, gz), δr(gy, Fx, gz)





for all x, y, z ∈ X, where φ : R+ → R+ is non-decreasing, φ(t) < t, t >

0, and
∑

φn(t) < ∞ for each t ∈ R+. Further, suppose that

(a) F (X) ⊆ g(X),

(b) g(X) is bounded and complete,

(c) {F, g} is coincidentally commuting.

Then F and g have a unique fixed point u ∈ X such that Fu = {u} =
gu.

The following theorem generalizes the result of [4] significantly for

a weak-compatible pair of a multivalued map and a self-map, on an

unbounded and incomplete D-metric space.

Theorem 3.3. Let g be a self map in a D-metric space (X, ρ) and

F : X → CB(X) with δ continuous in two variables satisfying (3.1)

and
(3.3) F (X) ⊆ g(X),

(3.4) one of F (X) or g(X) is complete,

(3.5) the pair (F, g) is weak compatible,

(3.6) there exists x0 ∈ X such that F ({xn}) =
⋃

i∈X
Xi is bounded,

where yn+1 = gxn+1 ∈ Fxn = Xn+1 for all n ∈ N .

Then F and g have the unique common fixed point in X.

Proof. For x0 ∈ X, construct sequences {xn} and {yn} in X such

that yn = gxn ∈ Fxn−1, ∀n ∈ N . Therefore, by Lemma 2.2, {yn} =

{gxn} is a D-Cauchy sequence in g(X).

CASE 1. (g(X) is complete) Since g(X) is complete,

(6) yn = gxn → u ∈ g(X).
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Therefore, there exists v ∈ X such that

(7) u = gv.

Step1. Putting x = xn, y = xn, z = v in condition (3.1), we get

δ(Fxn, Fxn, F v)

≤ φ Max









ρ(gxn, gxn, gv), δ(Fxn, Fxn, gv), δ(gxn, Fxn, gv),
δ(gxn, Fxn, gv), δ(gxn, Fxn, gv), δ(gxn, Fxn, gv),
δ(gxn, gxn, F v), δ(gxn, Fxn, F v), δ(gxn, Fxn, F v),
δ(gxn, Fxn, F v), δ(gxn, Fxn, F v)









Letting n → ∞ and using (6), (7) and Lemma 2.2, we get

δ(u, u, F v) ≤ φδ(u, u, F v) < δ(u, u, F v), if δ(u, u, F v) > 0,

which is a contradiction. Thus δ(u, u, F v) = 0, which gives u = Fv.

Hence u = gv = Fv. Since (F, g) is weak-compatible, we obtain

(8) Fu = gu.

Step 2. Putting x = xn, y = xnandz = u in condition (3.1), we get

δ(Fxn, Fxn, Fu)

≤ φ Max









ρ(gxn, gxn, gu), δ(Fxn, Fxn, gu), δ(gxn, Fxn, gu),
δ(gxn, Fxn, gu), δ(gxn, Fxn, gu), δ(gxn, Fxn, gu),
δ(gxn, gxn, Fu), δ(gxn, Fxn, Fu), δ(gxn, Fxn, Fu),
δ(gxn, Fxn, Fu), δ(gxn, Fxn, Fu)









.

Letting n → ∞ and using (6), (8) and Lemma 2.2, we get

δ(u, u, Fu) ≤ φδ(u, u, gu) < δ(u, u, Fu), if δ(u, u, Fu) > 0,

which is a contradiction. Thus δ(u, u, Fu) = 0, which gives u = Fu.

Hence u = gu = Fu. Therefore, u is a common fixed point of F and g.

CASE 2. (When F (X) is complete) Since yn ∈ Fxn−1, yn ∈ F (X)

for all n ∈ N . {yn} is a D-Cauchy sequence in F (X), which is complete.

Therefore, {yn} → u ∈ F (X) ⊆ g(X). Hence u ∈ g(X), i.e., u = gv

for some v ∈ X. The rest follows as in Case 1.

Step 3. (Uniqueness) Let w be another common fixed point of F

and g. Then

(9) w = Fw = gw.
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Since yn → u, gxn → u. Hence by using (ii) of Lemma 2.2,

(10) Fxn → {u}

Taking x = xn, y = xn and z = w in condition (3.1), we get

δ(Fxn, Fxn, Fw)

≤ φ Max









ρ(gxn, gxn, gw), δ(Fxn, Fxn, gw), δ(gxn, Fxn, gw),
δ(gxn, Fxn, gw), δ(gxn, Fxn, gw), δ(gxn, Fxn, gw),
δ(gxn, gxn, Fw), δ(gxn, Fxn, Fw), δ(gxn, Fxn, Fw),
δ(gxn, Fxn, Fw), δ(gxn, Fxn, Fw)









.

Letting n → ∞ and using (6), (9) and Lemma 2.2, we get

δ(u, u, w) ≤ φδ(u, u, w) < δ(u, u, w), if δ(u, u, w) > 0,

which is a contradiction. Thus δ(u, u, w) = 0, which gives u = w.

Therefore, u is the unique common fixed point of F and g.

Note that (1) if (3.1) holds for all x, y, z ∈ X, then continuity of g

at u implies continuity of F at u in view of the uniqueness of the fixed

point and of (ii) of Lemma 2.2,

(2) the power of r in ρ and δ in the result of [4] gets cancelled through-

out. Hence it is insignificant.

Remark 1. Theorem 3.3 generalizes the result of [4] in the following

sense: (a) The contractive condition of theorem 3.3 contains eleven

factors in the right. Therefore, the contraction taken in our Theorem

3.3 is more general than that of [4].

(b) The function φ taken in Theorem 3.3 is less restrictive than that

of [5] as
∑

φn(t) need not to be summable in our Theorem 3.3.

(c) In Theorem 3.3 , F ({xn}) =
⋃

i
Xi =

⋃

i
F (xi−1) =

⋃

n
F (xn) ⊆

F (X) ⊆ g(X) is assumed to be bounded. Hence the domain g(X) of

boundedness of [4] is larger than that one in our theorem 3.3.

In [3], Dhage has established the following result for two single valued
maps:

Theorem 3.4. ([3]) Let f and g be any two self-maps of a D-metric

space X satisfying
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ρ(fx, fy, fz) ≤ λρ(gx, gy, gz),

for all x, y, z ∈ X and for 0 ≤ λ < 1. Further, suppose that

(a) f(X) ⊆ g(X),

(b) any one of f(X) or g(X) is complete,

(c) f and g are coincidentally commuting.

Then f and g have a unique common fixed point.

Taking F to be a single-valued map, we have the following corollary

of Theorem 3.3:

Corollary 3.5. Let F and g be self-maps on a D-metric space

(X, ρ), where ρ is continuous in two variables satisfying (3.3), (3.4), (3.5),

(3.6) and

ρ(Fx, Fy, F z ≤ φ {ρ(gx, gy, gz)}

for all x, y ∈ O(g−1F, x0), z ∈ X. Then F and g have a unique common

fixed point in X.

Proof. The result follows from Theorem 3.3, by restricting maximum

to only first factor of (3.1).

Remark 2. Even Corollary 3.5 generalizes the result of [3] by taking

φ(t) = λt, ∀t ∈ R+, for some 0 ≤ λ < 1. Generalization is in the sense

of domains of variables x and y and non-summability of φ.

In [11], Rhoades proved the following:

Theorem 3.6. ([11]) Let X be a complete and bounded D-metric

space, and let f be a self map of X satisfying

ρ(fx, fy, fz) ≤ q Max

(

ρ(x, y, z), ρ(fx, x, z), ρ(fy, y, z),
ρ(x, fy, z), ρ(y, fx, z),

)

for all x, y, z ∈ X, where 0 ≤ q < 1. Then f has a unique fixed point p

in X and f is continuous at p.

The following corollary of Theorem 3.3 is a significant generalization

of it:
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Corollary 3.7. Let F be a self map on a complete D-metric space

(X, ρ), in which ρ is continuous in two variables, such that for some

x0 ∈ X, orbit O(F, x0) is bounded and

ρ(Fx, Fy, F z) ≤ φ Max













ρ(x, y, z), ρ(Fx, Fy, z), ρ(x, Fx, z),
ρ(y, F y, z), ρ(x, Fy, z), ρ(y,Fx, z),
ρ(x, y, F z), ρ(x, Fx,F z),
ρ(y, F y, F z),
ρ(x, Fy, F z), ρ(y, Fx, Fz)













for all x, y ∈ O(F, x0) and all z ∈ X. Then F has a unique fixed point

in X.

Proof. The result follows from Theorem 3.3 by taking g = I . Since

F is a single valued, δ = ρ.

Remark 3. The above corollary generalizes the result of [11] by

taking φ(t) = λt, ∀t ∈ R+. Here,

(a) φ is less restrictive (not requiring summability) than q of [11].

(b) Contractive condition of Corollary 3.7 is more general than that

of the contractive condition of the result of [11].

(c) Domains of x, y and of boundedness in above corollary is less than

that of result of [11].

It is to be noted that the mentioned continuity of a D-metric ρ in

two variables is necessary, as there are examples of D-metric spaces in

which ρ is not continuous even in one variable.
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