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COMMON RANDOM FIXED POINTS OF RANDOM

MULTIVALUED OPERATORS ON POLISH SPACES

V.H. Badshah* and Shweta Gagrani**

Abstract. In this paper, we prove the existence of a common ran-
dom fixed point of two random multivalued generalized contractions

by using functional expressions.

1. Introduction

Random fixed point theorems are stochastic generalization of clas-

sical fixed point theorems [6, 15]. Itoh [8, 9] extended several well

known fixed point theorems, i.e., for contraction, nonexpansive and

condemning, mappings to the random case. Thereafter, various sto-

chastic aspects of Schauder’s fixed point theorem have been studied by

Sehgal and Singh [14], Papageorgiou [13], Lin [11] and many authors.

In a separable metric space, random fixed point theorems for contrac-

tive mappings were proved by Spacek [15], Hans [5, 6, 7], Mukherjee

[12]. Afterwards, Beg and Shahzad [3, 4], Badshah and Sayyad [1]

studied the structure of common random fixed points and random co-

incidence points of a pair of compatible random operators and proved

the random fixed points theorems for contraction random operators

in Polish spaces.

The authors are thankful to the referee for a thorough persuasion of the paper
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some arguments and the elaboration of others.
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This paper is in continuation of these investigations and proves the

existence of a common random fixed point of the random multivalued

generalized contractions with functional expressions.

2. Preliminaries

Let (X, d) be a Polish space, that is, a separable complete metric

space, and let (Ω,A) be a measurable space. Let 2X be a family of all

subsets of X and CB(X) denote the family of all non-empty bounded

closed subsets of X. A mapping T : Ω → 2X is called measurable if for

all open subsets C of X, T−1(C) = {w ∈ Ω : T (w) ∩ C 6= φ} ∈ A. A

mapping ξ : Ω → X is said to be measurable selector of a measurable

mapping T : Ω → 2X if ξ is measurable and ξ(w) ∈ T (w) for all w ∈ Ω.

A mapping f : Ω×X → X is called a random operator if for all x ∈ X,

f(·, x) is measurable. A mapping T : Ω × X → CB(X) is called a

random multivalued operator if for every x ∈ X, T (·, x) is measurable.

A measurable mapping T : Ω × X is called a random fixed point of a

random multivalued operator T : Ω×X → CB(X) (f : Ω×X → X)

if for every w ∈ Ω, ξ(w) ∈ T (w, ξ(w)) (f(w, ξ(w)) = ξ(w)). Let

T : Ω × X → CB(X) be a random operator and {ξn} a sequence of

measurable mappings ξn : Ω → X. The sequence {ξn} is said to be

⁀asymptotically T -regular if d(ξn(w), T (w, ξn(w))) → 0.

Jungck [10] gave the notion of commuting mappings by showing

that two self-maps S, T on a complete metric space satisfying a con-

tractive condition have a common fixed point. Beg and Azam [2]

further extended it to the case of pairs of multivalued mappings sat-

isfying a more general contractive type condition. Later on, Beg and

Shahzad [4] generalized and proved common random fixed point the-

orems for random multivalued operators on metric spaces.

3. Main results

In this section we give stochastic version of a result of Beg and
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Shahzad [4].

Theorem 1. Let X be a Polish space. Let T, S : Ω×X → CB(X)

be two continuous random multivalued operators. If there exist mea-

surable mappings α, β : Ω → (0, 1) such that

H(S(w, x), T (w, y)) ≤ α(w)
d(x, S(w, x))2 + d(y, T (w, y))2

d(x, S(w, x)) + d(y, T (w, y))
+β(w)d(x, y)

for each x, y ∈ X,w ∈ Ω and α, β ∈ R
+ with 2α(w)+β(w) < 1, there

exists a common random fixed point of S and T (hence H represents

the Hausdroff metric on CB(X) induced by the metric d).

Proof. Let ξ0 : Ω → X be an arbitrary measurable mapping and

choose a measurable mapping ξ1 : Ω → X such that ξ1(w) ∈ S(w, ξ0(w))

for each w ∈ Ω. Then for each w ∈ Ω,

H(S(w,ξ0(w)), T (w, ξ1(w)))

≤ α(w)
d(ξ0(w), S(w, ξ0(w)))2 + d(ξ1(w), T (w, ξ1(w)))2

d(ξ0(w), S(w, ξ0(w))) + d(ξ1(w), T (w, ξ1(w)))

+ β(w)d(ξ0(w), ξ1(w)).

Further, there exists a measurable mapping ξ2 : Ω → X such that for

all w ∈ Ω, ξ2(w) ∈ T (w, ξ1(w)) and

d(ξ1(w), ξ2(w)) ≤ α(w)
d(ξ0(w), ξ1(w))2 + d(ξ1(w), ξ2(w))2

d(ξ0(w), ξ1(w)) + d(ξ1(w), ξ2(w))

+ β(w)d(ξ0(w), ξ1(w))

≤α(w)
{d(ξ0(w), ξ1(w)) + d(ξ1(w), ξ2(w))}2 − 2d(ξ0(w), ξ1(w))d(ξ1(w), ξ2(w))

d(ξ0(w), ξ1(w)) + d(ξ1(w), ξ2(w))

+ β(w)d(ξ0(w), ξ1(w))

≤ α(w)[d(ξ0(w), ξ1(w)) + d(ξ1(w), ξ2(w))] + β(w)d(ξ0(w), ξ1(w)).

So

(1 − α(w))d(ξ1(w), ξ2(w)) ≤ (α(w) + β(w))d(ξ0(w), ξ1(w)).
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Thus

d(ξ1(w), ξ2(w)) ≤ k(w)d(ξ0(w), ξ1(w)),

where k = k(w) = α(w)+β(w)
1−α(w) < 1.

By Beg and Shahzad [3, Lemma 2.3], we obtain a measurable map-

ping ξ3 : Ω → X such that for all w ∈ Ω, ξ3(w) ∈ S(w, ξ2(w)) and

d(ξ2(w), ξ3(w)) ≤α(w)
d(ξ1(w), ξ2(w))2 + d(ξ2(w), ξ3(w))2

d(ξ1(w), ξ2(w)) + d(ξ2(w), ξ3(w))

+ β(w)d(ξ1(w), ξ2(w)).

Hence

d(ξ2(w), ξ3(w)) ≤α(w)[d(ξ1(w), ξ2(w)) + d(ξ2(w), ξ3(w))]

+ β(w)d(ξ1(w), ξ2(w)).

So

(1 − α(w))d(ξ2(w), ξ3(w)) ≤ (α(w) + β(w))d(ξ1(w), ξ2(w)).

Thus

d(ξ2(w), ξ3(w)) ≤ k2d(ξ0(w), ξ1(w)).

Similarly, proceeding in the same way, by induction, we get a se-

quence of measurable mappings ξn : Ω → X such that for n > 0 and

for any w ∈ Ω,

ξ2n+1(w) ∈ S(w, ξ2n(w)), ξ2n+2(w) ∈ T (w, ξ2n+1(w))

and

d(ξn(w), ξn+1(w)) ≤ kd(ξn−1(w), ξn(w)) ≤ · · · ≤ knd(ξ0(w), ξ1(w)).



RANDOM MULTIVALUED OPERATORS ON POLISH SPACES 37

Further, for m > n,

d(ξn(w), ξm(w)) ≤ d(ξn(w), ξn+1(w)) + · · · + d(ξm−1(w), ξm(w))

≤ (kn + kn+1 + · · · + km−1)d(ξ0(w), ξ1(w))

≤
kn

1 − k
d(ξ0(w), ξ1(w)),

which tends to zero as n → ∞. It follows that {ξn(w)} is a Cauchy

sequence and there exists a measurable mapping ξ : Ω → X such that

ξn(w) → ξ(w) for each w ∈ Ω. It implies that ξ2n+1(w) → ξ(w) and

ξ2n+2(w) → ξ(w). Thus we have for any w ∈ Ω,

d(ξ(w),S(w, ξ(w))) ≤ d(ξ(w), ξ2n+2(w)) + d(ξ2n+2(w), S(w, ξ(w)))

≤ d(ξ(w), ξ2n+2(w)) + H(T (w, ξ2n+1(w)), S(w, ξ(w))).

Therefore,

d(ξ(w),S(w, ξ(w))) ≤ d(ξ(w), ξ2n+2(w)))

+ α(w)
d(ξ(w), S(w, ξ(w)))2 + d(ξ2n+1(w), T (w, ξ2n+1(w)))2

d(ξ(w), S(w, ξ(w))) + d(ξ2n+1(w), T (w, ξ2n+1(w)))

+ β(w)d(ξ(w), ξ2n+1(w)).

Taking n → ∞, we have

d(ξ(w), S(w, ξ(w))) ≤ α(w)d(ξ(w), S(w, ξ(w))).

Hence ξ(w) ∈ S(w, ξ(w)) for all w ∈ Ω.

Similarly, for any w ∈ Ω,

d(ξ(w), T (w, ξ(w))) ≤ α(w)d(ξ(w), ξ2n+1(w))

+ H(S(w, ξ2n(w)), T (w, ξ(w)))

≤ α(w)d(ξ(w), T (w, ξ(w))).

Hence ξ(w) ∈ T (w, ξ(w)) for all w ∈ Ω. �



38 V.H. BADSHAH AND S. GAGRANI

Corollary 2. Let X be a Polish space and T : Ω×X → CB(X)

a continuous random multivalued operator. If there exist measurable

mappings α, β : Ω → (0, 1) such that for each x, y ∈ X and w ∈ Ω

H(T (w, x), T (w, y)) ≤ α(w)
d(x, T (w, x))2 + d(y, T (w, y))2

d(x, T (w, x)) + d(y, T (w, y))

+ β(w)d(x, y).

Then there exists a sequence {ξn} of measurable mappings ξn : Ω → X

which is asymptotically T -regular and converges to a random point

of T .
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